Wastewater treatment will always pose problems if there are no new alternative technologies in place to replace the currently available technologies. More recently, it has been estimated that developing countries will run out of water by 2050. This is a course for concern not only to the communities but also a challenge to the scientist to find new ways of wastewater recycling. Water losses can be avoided through implementation of easy and inexpensive technologies for wastewater treatment. Environmental concerns over insufficiently performing septic systems and high expenses in the construction of sewer systems as well as their operations with centralized water purification systems have spurred investigation into the appropriateness of the use of wetland technology for wastewater treatment. Constructed wetland efficiency and potential application in wastewater treatment has been reported decades ago. However, the logistics and research for their commercial applications in wastewater treatment has not been documented in details. Research has shown that wetland systems can achieve high treatment efficiencies with regards to both organic and inorganic nutrients as well as pathogen removal if properly managed and efficiently utilized. This can have a profound effect in the management and conservation of our scarce and yet depleting water resources.
The use of supplemented agricultural waste in mushroom cultivation can be one of the environmentally friendly strategies for poverty alleviation. The study evaluated the performance of Pleurotus pulmonarius mushroom grown on maize stalk supplemented with varying levels of wheat bran (WB) and maize flour (MF). A completely random design was used for the experiments. It was observed that Pleurotus pulmonarius was significantly affected by varying levels of supplementation, as 20% WB supplementation encountered higher contamination. The lower supplementation levels gave significantly shorter colonisation period with better mycelial growth rate (MGR). The 2% MF, 2% WB and 4% WB gave significantly higher MGR and faster colonisation. The shortest pinning time (TP) was observed at the first flush with the minimum of 2 days. Higher supplementation levels gave maximum yield and biological efficiency (BE). With further increase of supplementation above a 12% WB and 14% MF, the BE and yield declined. Lower supplementation levels resulted in quicker colonisation period and improved growth rate, whereas high supplementation gave better production in terms of yield and BE. Therefore, for the purpose of maximum production, 12% WB and 14% MF may be recommended while for fast production time, 2% MF and 2% WB are recommended.
Fecal contamination of source waters and its associated intestinal pathogens continues to pose risks to public health although the extent and effect of microbial contamination of source waters gets very little attention in designing treatment plants in most developing countries. Coliform counts give an indication of the overall bacterial contamination of water and thus its safety for human consumption. However, their presence fails to provide information about the source of fecal contamination which is vital to managing fecal contamination problems in surface waters. This study explored the use of multiple antibiotic resistance (MAR) indexing as means of differentiating E. coli isolates from different sources. A total of 322 E. coli isolates were obtained from municipal wastewater and from fecal samples from domestic and wild animals. Conventional culture methods and standard chemical and biochemical tests were used for isolation and identification of E. coli. Isolates were assayed against 10 antibiotics using the micro-dilution technique. The results obtained generated antibiotic resistance profiles which were used to statistically group the isolates into different subsets. Correct source classification was obtained for 60% of human-derived and 95% non-human-derived E. coli respectively. These results indicate the validity of the usefulness of MAR indexing as a method of bacterial source tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.