Objective-Experimental data indicate inhibitory effects of the cerebellum on seizure activity. Structural damage such as cerebellar atrophy, which is a common finding in patients with chronic epilepsy, may reduce these effects. Methods-Outcome after temporal lobectomy was studied in 78 consecutive patients, with or without cerebellar atrophy diagnosed by MRI. Results-Thirty five patients (45%) showed cerebellar atrophy. At a mean follow up of 14-6 (range, 6-40) months, 50 patients (64%) had no postoperative seizures. In these patients, the frequency of cerebellar atrophy was significantly lower (34%) than in patients who relapsed (64%, p < 0.01). Occurrence of generalised tonic-clonic seizures (GTCS) within two years before surgery, occurrence of GTCS at any time preoperatively, long duration of epilepsy, and older age at surgery were also associated with recurrence of seizures. Multiple logistic regression analysis suggested occurrence of GTCS within two years before surgery and cerebellar atrophy as the main predictive indicators. When both factors were present, the percentage of patients remaining seizure free since surgery fell to 30%, compared with 60% when only GTCS were present, 78-6% when only cerebellar atrophy was present, and 87-5% when both factors were absent. Conclusions-Cerebellar atrophy shown by MRI was a frequent finding in surgically treated patients with temporal lobe epilepsy. The presence of cerebellar atrophy seems to worsen the prognosis after temporal lobe resection.
An outstanding technique in point of ultra-precision as well as economical production of mirrors is Single Point Diamond Turning (SPDT). The unique properties of the diamonds are used to get optical surfaces with roughness values down to 5 nm rms (root mean square) and very precise form accuracy down to 70 nm rms and 500 nm p.-v. (peak to valley) value over an area of 200 mm x 200 mm. This quality level is typical for applications in the Near Infrared (NIR) and Infrared (IR) range. For applications in the VIS and UV range the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Favorable is an aluminium base body plated with a thick-film of Nickel-Phosphorus alloy (NiP). This alloy can be polished with computer assistance. Ion Beam Figuring (IBF) is the final manufacturing step. The properties after the finishing process are better than 1 nm rms for roughness and down to 15 nm rms respectively 100 nm p.-v. regarding the surface irregularity for complex optical shapes. The techniques SPDT, polishing and IBF ensures a high quality level for large mirrors with plan, spherical or aspherical surfaces. The manufacturing chain will be analyzed by surface characterisation based on 2D profilometry and white light interferometry to measure the roughness and 3D-profilometry and interferometry to monitor the shape irregularity. Scattering light analysis deepens these investigations. This paper summarizes technologies and measurement results for SPDT and surface finish of metal mirrors for novel optical applications
Engineers who design hard real-time embedded systems express a need for several times the performance available today while keeping safety as major criterion. A breakthrough in performance is expected by parallelizing hard real-time applications and running them on an embedded multi-core processor, which enables combining the requirements for high-performance with timing-predictable execution.parMERASA will provide a timing analyzable system of parallel hard real-time applications running on a scalable multicore processor. parMERASA goes one step beyond mixed criticality demands: It targets future complex control algorithms by parallelizing hard real-time programs to run on predictable multi-/many-core processors. We aim to achieve a breakthrough in techniques for parallelization of industrial hard real-time programs, provide hard real-time support in system software, WCET analysis and verification tools for multi-cores, and techniques for predictable multi-core designs with up to 64 cores.
The EC project parMERASA (Multicore Execution of Parallelized Hard Real-Time Applications Supporting Analyzability) investigated timing-analyzable parallel hard real-time applications running on a predictable multicore processor. A pattern-supported parallelization approach was developed to ease sequential to parallel program transformation based on parallel design patterns that are timing analyzable. The parallelization approach was applied to parallelize the following industrial hard real-time programs: 3D path planning and stereo navigation algorithms (Honeywell International s.r.o.), control algorithm for a dynamic compaction machine (BAUER Maschinen GmbH), and a diesel engine management system (DENSO AUTOMOTIVE Deutschland GmbH). This article focuses on the parallelization approach, experiences during parallelization with the applications, and quantitative results reached by simulation, by static WCET analysis with the OTAWA tool, and by measurement-based WCET analysis with the RapiTime tool.
Cerebellar atrophy occurs in a considerable percentage of patients with chronic focal epilepsy and obviously increases the susceptibility for cerebellar AEs of carbamazepine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.