SUMMARYThis paper presents the results of formation keeping control of a group of nonholonomic wheeled robots within the port-Hamiltonian framework and in the presence of matched input disturbances. Two scenarios on the internal damping of the dynamics of the robots are considered: strictly output passive and loss less robots. For strictly output passive robots, the distributed formation keeping controllers drive the robots towards a desired formation, while internal-model-based controllers locally compensate the harmonic input disturbance for each of the robots. Moreover, the effect of constant input disturbances is studied considering internal-model-based controllers. For lossless robots, results on formation keeping control are presented. Simulation results illustrate the effectiveness of the approach.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.