SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated. We have isolated a transcription factor cDNA from barley and purified the corresponding protein. The transcription factor, SUSIBA2 (sugar signaling in barley), belongs to the WRKY proteins and was shown to bind to SURE and W-box elements but not to the SP8a element in the iso1 promoter. Nuclear localization of SUSIBA2 was demonstrated in a transient assay system with a SUSIBA2:green fluorescent protein fusion protein. Exploiting the novel transcription factor oligodeoxynucleotide decoy strategy with transformed barley endosperm provided experimental evidence for the importance of the SURE elements in iso1 transcription. Antibodies against SUSIBA2 were produced, and the expression pattern for susiba2 was determined at the RNA and protein levels. It was found that susiba2 is expressed in endosperm but not in leaves. Transcription of susiba2 is sugar inducible, and ectopic susiba2 expression was obtained in sugar-treated leaves. Likewise, binding to SURE elements was observed for nuclear extracts from sugar-treated but not from control barley leaves. The temporal expression of susiba2 in barley endosperm followed that of iso1 and endogenous sucrose levels, with a peak at ف 12 days after pollination. Our data indicate that SUSIBA2 binds to the SURE elements in the barley iso1 promoter as an activator. Furthermore, they show that SUSIBA2 is a regulatory transcription factor in starch synthesis and demonstrate the involvement of a WRKY protein in carbohydrate anabolism. Orthologs to SUSIBA2 were isolated from rice and wheat endosperm.
After tissue or body fluid sampling, proteases and other protein-modifying enzymes can rapidly change composition of the proteome. As a direct consequence, analytical results will reflect a mix of in vivo proteome and ex vivo degradation products. Vital information about the presampling state may be destroyed or distorted, leading to variation between samples and incorrect conclusions. Sample stabilization and standardization of sample handling can reduce or eliminate this problem. Here, a novel tissue stabilization system which utilizes a combination of heat and pressure under vacuum was used to stop degradation in mouse brain tissue immediately after sampling. It was found by biochemical assays that enzymatic activity was reduced to background levels in stabilized samples. Western blot analysis confirmed that post-translational phosphorylations of analyzed proteins were stable and conserved for up to 2 h at room temperature and that peptide extracts were devoid of abundant protein degradation fragments. The combination of reduced complexity and proteolytic inactivation enabled mass spectrometric identification of several neuropeptides and endogenous peptides including modified species at higher levels compared to nonstabilized samples. The tissue stabilizing system ensures reproducible and rapid inactivation of enzymes. Therefore, the system provides a powerful improvement to proteomics by greatly reducing the complexity and dynamic range of the proteome in tissue samples and enables enhanced possibilities for discovery and analysis of clinically relevant protein/peptide biomarkers.
The effectiveness of rapid and controlled heating of intact tissue to inactivate native enzymatic activity and prevent proteome degradation has been evaluated. Mouse brains were bisected immediately following excision, with one hemisphere being heat treated followed by snap freezing in liquid nitrogen while the other hemisphere was snap frozen immediately. Sections were cut by cryostatic microtome and analyzed by MALDI-MS imaging and minimal label 2-D DIGE, to monitor time-dependent relative changes in intensities of protein and peptide signals. Analysis by MALDI-MS imaging demonstrated that the relative intensities of markers varied across a time course (0-5 min) when the tissues were not stabilized by heat treatment. However, the same markers were seen to be stabilized when the tissues were heat treated before snap freezing. Intensity profiles for proteins indicative of both degradation and stabilization were generated when samples of treated and nontreated tissues were analyzed by 2-D DIGE, with protein extracted before and after a 10-min warming of samples. Thus, heat treatment of tissues at the time of excision is shown to prevent subsequent uncontrolled degradation of tissues at the proteomic level before any quantitative analysis, and to be compatible with downstream proteomic analysis.
Little is known about the nature of post mortem degradation of proteins and peptides on a global level, the socalled degradome. This is especially true for nonneural tissues. Degradome properties in relation to sampling procedures on different tissues are of great importance for the studies of, for instance, post translational modifications and/or the establishment of clinical biobanks. Here, snap freezing of fresh (<2 min post mortem time) mouse liver and pancreas tissue is compared with rapid heat stabilization with regard to effects on the proteome (using two-dimensional differential in-gel electrophoresis) and peptidome (using label free liquid chromatography). We report several proteins and peptides that exhibit heightened degradation sensitivity, for instance superoxide dismutase in liver, and peptidyl-prolyl cis-trans isomerase and insulin C-peptides in pancreas. Tissue sampling based on snap freezing produces a greater amount of degradation products and lower levels of endogenous peptides than rapid heat stabilization. We also demonstrate that solely snap freezing related degradation can be attenuated by subsequent heat stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.