In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.
Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI-guided radiation therapy, which could support the definition of patient-specific optimal treatment strategies.
The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient's thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient's anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.
Accurate dose delivery to extra-cranial lesions requires tumor motion compensation. An effective compensation can be achieved by real-time tracking of the target position, either measured in fluoroscopy or estimated through correlation models as a function of external surrogate motion. In this work, we integrated two internal/external correlation models (a state space model and an artificial neural network-based model) into a custom infra-red optical tracking system (OTS). Dedicated experiments were designed and conducted at GSI (Helmholtzzentrum für Schwerionenforschung). A robotic breathing phantom was used to reproduce regular and irregular internal target motion as well as external thorax motion. The position of a set of markers placed on the phantom thorax was measured with the OTS and used by the correlation models to infer the internal target position in real-time. Finally, the estimated target position was provided as input for the dynamic steering of a carbon ion beam. Geometric results showed that the correlation models transversal (2D) targeting error was always lower than 1.3 mm (root mean square). A significant decrease of the dosimetric error with respect to the uncompensated irradiation was achieved in four out of six experiments, demonstrating that phase shifts are the most critical irregularity for external/internal correlation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.