Objective:A crucial property of esthetic restorative materials is their long-term color stability. The aim of this in vitro study was to evaluate the color stability of esthetic restorative materials (one microfilled flowable composite, one nanofilled composite, one nanoybrid composite, one microfilled composite, and one nanoybrid ormocer-based composite) after surface roughening with cola and exposure to different staining solutions (coffee and red wine).Materials and Methods:All materials were polymerized into silicone rubber rings (2 mm × 6 mm × 8 mm) to obtain 150 specimens identical in size. Seventy-five specimens of Group A were first exposed to cola for 24 h, and then samples were immersed in coffee or red wine over a 28-day test period. A colorimetric evaluation, according to the CIE L*a*b* system, was performed at 7, 14, 21, 28 days. Shapiro–Wilk test and Kruskal–Wallis analysis of variance were applied to assess significant differences among restorative materials. Means were compared with Scheffe's multiple comparison test at the 0.05 level of significance.Results:Specimens of Group A showed higher variations when compared with Group B's specimens (P < 0.05). After 28 days, the immersion protocols caused a clinically perceivable color change for all materials tested (P < 0.05). CeramX Universal and Admira Fusion showed the lowest ΔE variations (P < 0.05).Conclusions:Staining beverages caused significant discolorations for all the materials tested. The first exposure to cola enhanced the subsequent staining with coffee or red wine. Nanohybrid composites reported the lowest color variations.
BackgroundThe objective of this in vitro study was to evaluate the over time color stability of one resin infiltrant (Icon) upon exposure to staining solutions (coffee and wine) compared with one nano-hybrid sealant (Grandio Seal), one transparent fissure sealant with fluoride (Control Seal) and one nanofilled composite (Filtek Supreme XTE).Material and MethodsAll materials were polymerized according to manufacturers’ instructions into silicon rings (height 1 mm; internal diameter 6 mm; external diameter 8 mm) to obtain specimens identical in size. The specimens were immersed in staining solutions at room temperature over a 28-day test period. The control samples have not been subjected to the staining process. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal Wallis ANOVA were applied to assess significant differences among different materials. Means were compared with Scheffe’s multiple-comparison test at the 0.05 level of significance.ResultsIn the case of all materials, immersion in solutions resulted in clinically perceivable color changes after 1 week (∆E < 3.3). Lowest CIE L* variation was registered for Control Seal and Grandio Seal both after 1 week and after 1 month, while Icon showed significantly higher variation (P < 0.05). Color coordinate CIE a* varied significantly more for Icon samples (P > 0.05). Color coordinate CIE b* varied similarly for all materials tested (P > 0.05).ConclusionsImmersion in coffee or red wine resulted in clinically perceivable color changes for all materials tested. Icon showed the highest color variations both after 1 week and 1 month. Icon can fix the initial esthetic problem associated with white spot lesions, but the resin may become more discolored than other materials over time. Key words:CIE Lab, color stability, resin infiltrant.
Background:Acidic beverages, such as soft drinks (orange juice and cola), can produce erosion of resin composites. The aim of this in vitro study was to evaluate the effect of immersion in acidic drink on the Vickers microhardness (VK) of different esthetic restorative materials (one nanohybrid Ormocer-based composite, one nanoceramic composite, one nanofilled composite, and one microfilled hybrid composite).Materials and Methods:In this in vitro study, thirty specimens of each esthetic restorative material were divided into three subgroups (n = 10): specimens of group 1 were used as control, specimens of group 2 were immersed in 50 ml of acidic drink for 1 day, specimens of group 3 were immersed in 50 ml of acidic drink for 7 days. Data were analyzed by Shapiro–Wilk test to assess the normality of the distributions followed by nonparametric Kruskal–Wallis analysis of variance and Mann–Whitney U-test comparison test among groups. A significant level of α = 0.05 was set for comparison between the groups.Results:Mann–Whitney U-test showed that each material showed lower microhardness values after immersion in acidic solution (P < 0.05). Paired t-test confirmed that microhardness for each composite did not change after immersion in distilled water (Control group) (P > 0.05). Significant changes were registered for all restorative materials after immersion in acidic solution for 1 day and 7 days (P < 0.05).Conclusion:The Filtek Supreme XTE, a nanofilled composite, and Admira Fusion, a nanohybrid ormocer-based composite, showed the best behavior. The Ceram X Universal (nanoceramic composite) although reached lower hardness values than the previous materials, but resisted well to the 1 week immersion in soft-drink. Finally, the Gradia Direct achieved the most disappointing results: Low microhardness values are justified by the nature of its filling (microfilled hybrid composite).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.