This study utilized spectral and thermal analysis of explanted hernia mesh materials to determine material inertness and elucidate reasons for hernia mesh explantation. Composite mesh materials, comprised of polypropylene (PP) and expanded polytetrafluoroethylene (ePTFE) mesh surrounded by a polyethylene terephthalate (PET) ring, were explanted from humans. Scanning electron microscopy (SEM) was conducted to visually observe material defects while attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to find chemical signs of surface degradation. Modulated differential scanning calorimetry (MDSC) and thermogravimetric analysis (TGA) gave thermal stability profiles that showed changes in heat of fusion and rate of percent weight loss, respectively. ATR-FTIR scans showed higher carbonyl peak areas as compared to pristine for 91% and 55% of ePTFE and PP explants, respectively. Ninety-one percent of ePTFE explants also exhibited higher C--H stretch peak areas. Seventy-three percent of ePTFE explants had higher heats of fusion while 64% of PP explants had lower heats of fusion with respect to their corresponding pristines. Only 9% of PET explants exhibited a lower heat of fusion than pristine. Seventy-three percent of ePTFE explants, 73% of PP explants, and only 18% of PET explants showed a decreased rate of percent weight loss as compared to pristine. The majority of the PP and ePTFE mesh explants demonstrated oxidation and crosslinking, respectively, while the PET ring exhibited breakdown at the sites of high stress. The results showed that all three materials exhibited varied degrees of chemical degradation suggesting that a lack of inertness in vivo contributes to hernia mesh failure.
Polypropylene mesh materials have been utilized in hernia surgery for over 40 years. However, they are prone to degradation due to the body's aggressive foreign body reaction, which may cause pain or complications, forcing mesh removal from the patient. To mitigate these complications, gold nanomaterials were attached to polypropylene mesh in order to improve cellular response. Pristine samples of polypropylene mesh were exposed to hydrogen peroxide/cobalt chloride solutions to induce formation of surface carboxyl functional groups. Gold nanoparticles were covalently linked to the mesh. Scanning electron microscopy confirmed the presence of gold nanoparticles. Differential scanning calorimetry and mechanical testing confirmed that the polypropylene did not undergo any significantly detrimental changes in physicochemical properties. A WST-1 cell culture study showed an increase in cellularity on the gold nanoparticle-polypropylene mesh as compared to pristine mesh. This study showed that biocompatibility of polypropylene mesh may be improved via the conjugation of gold nanoparticles.
Polyethylene terephthalate (PET) mesh is one of the most commonly used synthetic biomaterials for tension-free hernia repair. In an effort to improve the biocompatibility of PET mesh, gold nanoparticles (AuNP) in various concentrations were conjugated to the PET surface to develop PET-AuNP scaffolds. These novel scaffolds were characterized with Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) to assess the addition of functional groups, presence of AuNPs, and thermal stability of the modified PET mesh, respectively. The biocompatibility of the PET-AuNP scaffolds was evaluated through in vitro cell culture assays. The cellularity of cells exposed to the PET-AuNP scaffolds, as well as the scaffolds' ability to reduce reactive oxygen species, was assessed using L929 murine fibroblasts. Antimicrobial properties of AuNPs conjugated to PET mesh were tested against the bacteria Pseudomonas aeruginosa. Results from the FT-IR showed presence of COOH groups while SEM displayed bonding of AuNPs to the PET surface. DSC results indicated that the PET more than likely did not undergo any detrimental degradation due to the surface modification. Results from the in vitro studies showed that AuNPs, in optimal concentrations (1× concentrations), enhanced cellularity, reduced ROS, and reduced bacteria adhesion to PET. These studies demonstrated enhanced biocompatibility of the AuNP conjugated PET mesh over pristine PET mesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.