Tungsten ditelluride (WTe2) is a transition metal dichalcogenide (TMD) with physical and electronic properties that make it attractive for a variety of electronic applications. Although WTe2 has been studied for decades, its structure and electronic properties have only recently been correctly described. We experimentally and theoretically investigate the structure, dynamics and electronic properties of WTe2, and verify that WTe2 has its minimum energy configuration in a distorted 1T structure (Td structure), which results in metallic-like transport. Our findings unambiguously confirm the metallic nature of WTe2, introduce new information about the Raman modes of Td-WTe2, and demonstrate that Td-WTe2 is readily oxidized via environmental exposure. Finally, these findings confirm that, in its thermodynamically favored Td form, the utilization of WTe2 in electronic device architectures such as field effect transistors may need to be reevaluated.
In this work, we demonstrate abrupt, reversible switching of resistance in 1T-TaS2 using dc and pulsed sources, corresponding to an insulator-metal transition between the insulating Mott and equilibrium metallic states. This transition occurs at a constant critical resistivity of 7 mohm-cm regardless of temperature or bias conditions and the transition time is significantly smaller than abrupt transitions by avalanche breakdown in other small gap Mott insulating materials. Furthermore, this critical resistivity corresponds to a carrier density of 4.5 × 10(19) cm(-3), which compares well with the critical carrier density for the commensurate to nearly commensurate charge density wave transition. These results suggest that the transition is facilitated by a carrier driven collapse of the Mott gap in 1T-TaS2, which results in fast (3 ns) switching.
We present a novel method for the direct metal-free growth of graphene on sapphire that yields high quality films comparable to that of graphene grown on SiC by sublimation. Graphene is synthesized on sapphire via the simple decomposition of methane at 1425-1600 °C. Film quality was found to be a strong function of growth temperature. The thickness, structure, interface characteristics, and electrical transport properties were characterized in order to understand the utility of this material for electronic devices. Graphene synthesized on sapphire is found to be strain relieved, with no evidence of an interfacial buffer layer. There is a strong correlation between the graphene structural quality and carrier mobility. Room temperature Hall effect mobility values were as high as 3000 cm(2)/(V s), while measurements at 2 K reached values of 10,500 cm(2)/(V s). These films also display evidence of the quantum Hall effect. Field effect transistors fabricated from this material had a typical current density of 200 mA/mm and transconductance of 40 mS/mm indicating that material performance may be comparable to graphene on SiC.
We directly demonstrate the importance of buffer elimination at the graphene/SiC(0001) interface for high frequency applications. Upon successful buffer elimination, carrier mobility increases from an average of 800 cm(2)/(V s) to >2000 cm(2)/(V s). Additionally, graphene transistor current saturation increases from 750 to >1300 mA/mm, and transconductance improves from 175 mS/mm to >400 mS. Finally, we report a 10× improvement in the extrinsic current gain response of graphene transistors with optimal extrinsic current-gain cutoff frequencies of 24 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.