The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL.
Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the group's opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions and , and constituting fractions and of the total population respectively, are present in the network. We show for stylized social networks (including Erdös-Rényi random graphs and Barabási-Albert scale-free networks) that the phase diagram of this system in parameter space consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.
We present results from a low-resolution spectroscopic survey for 21 galaxy clusters at 0.4 < z < 0.8 selected from the ESO Distant Cluster Survey (EDisCS). We measured spectra using the Low-Dispersion Prism (LDP) in IMACS on the Magellan Baade telescope and calculate redshifts with a precision of σ z = 0.006. We find 1, 602 galaxies that are brighter than R = 22.6 in the large-scale cluster environs. We identify the galaxies expected to be accreted by the clusters as they evolve to z = 0 using spherical infall models, and find that ∼ 30-70% of the z = 0 cluster population lies outside the virial radius at z ∼ 0.6. For analogous clusters at z = 0, we calculate that the ratio of galaxies that have fallen into the clusters since z ∼ 0.6 to that which were already in the core at that redshift is typically between ∼ 0.3 and 1.5. This wide range of ratios is due to intrinsic scatter and is not a function of velocity dispersion, so a variety of infall histories is to be expected for clusters with current velocity dispersions of 300 < ∼ σ < ∼ 1200 km s −1 . Within the infall regions of z ∼ 0.6 clusters, we find a larger red fraction of galaxies than in the field and greater clustering among red galaxies than blue. We interpret these findings as evidence of "preprocessing", where galaxies in denser local environments have their star formation rates affected prior to their aggregation into massive clusters, although the possibility of backsplash galaxies complicate the interpretation.
The authors have integrated the major findings on the sleep-wake cycle and its performance correlates in adolescents. Basic research shows that lack of synchronicity between early school start times and the circadian rhythm of adolescents (and the sleep debt accumulated as a result) involves several cognitive correlates that may harm the academic performance of adolescent students. The authors therefore examined findings from pilot interventions in which schools delayed their start times; specifically, they examined the effects on students, including potential pitfalls and strategies to consider for effective scheduling change. There is sufficient evidence that adolescent students would benefit from delaying school start times and that this change can be implemented with tolerable consequences if adequately strategized by school districts and communities.
Haptics, or the sense of active touch, is an underused modality in educational contexts. In this paper, we review current literature regarding the development of haptic processes and the underlying neurocognitive mechanisms. On the basis of previous research, we argue that exposure and guidance can increase the ability of individuals to employ haptic processes by recruiting areas of the visual cortex that are normally employed for visual processes, a process known as cross-modal plasticity. Cross-modal plasticity provides a plausible account for the counter-intuitive creativity displayed by blind individuals in producing drawings. We propose that further implementation of haptics in education may be used to promote creativity and inclusion, as well as facilitating other processes required for learning in educational settings. In particular, haptic drawing could be generalized as a tool for inclusive education to promote and enhance creativity at any age through cross-modal neurocognitive plasticity in students with and without visual impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.