To understand the dynamics of COVID-19 in Nigeria, a mathematical model which incorporates the key compartments and parameters regarding COVID-19 in Nigeria is formulated. The basic reproduction number is obtained which is then used to analyze the stability of the disease-free equilibrium solution of the model. The model is calibrated using data obtained from Nigeria Centre for Disease Control and key parameters of the model are estimated. Sensitivity analysis is carried out to investigate the influence of the parameters in curtailing the disease. Using Pontryagin’s maximum principle, time-dependent intervention strategies are optimized in order to suppress the transmission of the virus. Numerical simulations are then used to explore various optimal control solutions involving single and multiple controls. Our results suggest that strict intervention effort is required for quick suppression of the disease.
The occurrence of a new strain of SARS-CoV-2 cannot be ruled out. Therefore, this study seeks to investigate the possible effects of a hypothetical imperfect anti-COVID-19 vaccine on the control of not only the first variant of SARS-CoV-2 but also the second (new) variant of SARS-CoV-2. We further examine the rates and
a
, escape of quarantined infectious individuals from isolation centers. The control
R
c
and basic reproduction numbers
R
0
are computed which gives assess to obtain asymptotic stability of disease-free equilibrium point globally and the existence of a unique persistent equilibrium solution. Numerical results reveal that people infected with the second strain who are vaccinated with an imperfect vaccine are under control but the prevalence of the second variant enhances the prevalence of the first variant. Thus, discovering a vaccine that is effective (to a good extent) for the prevention of variant 2 (new variant) is necessary for the control of COVID-19. Numerical results also reveal that increase in the rate at which individuals infected with the first variant escape the isolation center gives rise to the population infected with the first variant and lowers the peak of the population infected with the second variant. This is probably because individuals infected with the second variant appear to be more careful with their lives and get vaccinated more than individuals infected with the first variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.