Implementing Artificial Intelligence for chemical applications provides a wealth of opportunity for materials discovery, healthcare and smart manufacturing. For such applications to be successful, it is necessary to translate the properties of molecules into a digital format so they can be passed to the algorithms used for smart modelling. The literature has shown a wealth of different strategies for this task, yet there remains a host of limitations. To overcome these challenges, we present two-dimensional images of chemical structures as molecular representations. This methodology was evaluated against other techniques in both classification and regression tasks. Images unlocked (1) superior augmentation strategies, (2) application of specialist network architectures and (3) transfer learning, all contributing to superior performance and without prior specialised knowledge on cheminformatics required. This work takes advantage of image feature maps which do not rely on chemical properties and so can represent multi-component systems without further property calculations.
Graphical abstract
Two analogues of the membrane-forming species
PhCH2SS(C24H40O14)(C20H41)
(1) have been prepared via short synthetic routes. The compounds readily form
self-assembled monolayers on gold.
PhCH2SS(C27H45O16)(C20H41)2
PhCH2SS(C29H48O17)(C20H41)3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.