Figure 1: (i.) Our Multi-Reality game starts with objects and characters from the real world. (ii.) Physical assets get animated using photo-realistic AR. (iii.) Moving a step forward in the RVC, the user interacts with a scene where physical and virtual assets coexist. (iv.
We address several acquisition questions that have arisen for the high cone-angle helical-scanning micro-CT facility developed at the Australian National University. These challenges are generally known in medical and industrial cone-beam scanners but can be neglected in these systems. For our large datasets, with more than 2048 3 voxels, minimising the number of operations (or iterations) is crucial. Large cone-angles enable high signal-to-noise ratio imaging and a large helical pitch to be used. This introduces two challenges: (i) non-uniform resolution throughout the reconstruction, (ii) over-scan beyond the region-of-interest significantly increases required reconstructed volume size. Challenge (i) can be addressed by using a double-helix or lower pitch helix but both solutions slow down iterations. Challenge (ii) can also be improved by using a lower pitch helix but results in more projections slowing down iterations. This may be overcome using less projections per revolution but leads to more iterations required. Here we assume a given total time for acquisition and a given reconstruction technique (SART) and seek to identify the optimal trajectory and number of projections per revolution in order to produce the best tomogram, minimise reconstruction time required, and minimise memory requirements.
Shadow-retargeting maps depict the appearance of real shadows to virtual shadows given corresponding deformation of scene geometry, such that appearance is seamlessly maintained. By performing virtual shadow reconstruction from unoccluded real-shadow samples observed in the camera frame, this method efficiently recovers deformed shadow appearance. In this manuscript, we introduce a light-estimation approach that enables light-source detection using flat Fresnel lenses that allow this method to work without a set of pre-established conditions. We extend the adeptness of this approach by handling scenarios with multiple receiver surfaces and a non-grounded occluder with high accuracy. Results are presented on a range of objects, deformations, and illumination conditions in real-time Augmented Reality (AR) on a mobile device. We demonstrate the practical application of the method in generating otherwise laborious in-betweening frames for 3D printed stop-motion animation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.