Background Artificial intelligence (AI) holds the promise of supporting nurses’ clinical decision-making in complex care situations or conducting tasks that are remote from direct patient interaction, such as documentation processes. There has been an increase in the research and development of AI applications for nursing care, but there is a persistent lack of an extensive overview covering the evidence base for promising application scenarios. Objective This study synthesizes literature on application scenarios for AI in nursing care settings as well as highlights adjacent aspects in the ethical, legal, and social discourse surrounding the application of AI in nursing care. Methods Following a rapid review design, PubMed, CINAHL, Association for Computing Machinery Digital Library, Institute of Electrical and Electronics Engineers Xplore, Digital Bibliography & Library Project, and Association for Information Systems Library, as well as the libraries of leading AI conferences, were searched in June 2020. Publications of original quantitative and qualitative research, systematic reviews, discussion papers, and essays on the ethical, legal, and social implications published in English were included. Eligible studies were analyzed on the basis of predetermined selection criteria. Results The titles and abstracts of 7016 publications and 704 full texts were screened, and 292 publications were included. Hospitals were the most prominent study setting, followed by independent living at home; fewer application scenarios were identified for nursing homes or home care. Most studies used machine learning algorithms, whereas expert or hybrid systems were entailed in less than every 10th publication. The application context of focusing on image and signal processing with tracking, monitoring, or the classification of activity and health followed by care coordination and communication, as well as fall detection, was the main purpose of AI applications. Few studies have reported the effects of AI applications on clinical or organizational outcomes, lacking particularly in data gathered outside laboratory conditions. In addition to technological requirements, the reporting and inclusion of certain requirements capture more overarching topics, such as data privacy, safety, and technology acceptance. Ethical, legal, and social implications reflect the discourse on technology use in health care but have mostly not been discussed in meaningful and potentially encompassing detail. Conclusions The results highlight the potential for the application of AI systems in different nursing care settings. Considering the lack of findings on the effectiveness and application of AI systems in real-world scenarios, future research should reflect on a more nursing care–specific perspective toward objectives, outcomes, and benefits. We identify that, crucially, an advancement in technological-societal discourse that surrounds the ethical and legal implications of AI applications in nursing care is a necessary next step. Further, we outline the need for greater participation among all of the stakeholders involved.
Digital startups' use of AI technologies has significantly increased in recent years, bringing to the fore specific barriers to deployment, use, and extraction of business value from AI. Utilizing a quantitative framework regarding the themes of startup growth and scaling, we examine the scaling behavior of AI, platform, and service startups. We find evidence of a sublinear scaling ratio of revenue to age-discounted employment count. The results suggest that revenueemployee growth pattern of AI startups is close to that of service startups, and less so to that of platform startups. Furthermore, we find a superlinear growth pattern of acquired funding in relation to the employment size that is largest for AI startups, possibly suggesting hype tendencies around AI startups. We discuss implications in the light of new economies of scale and scope of AI startups related to decisionmaking and prediction.
The assumption that generativity engenders unbounded growth has acquired an almost taken-for-granted position in information systems and management literature. Against this premise, we examine the relationship between generativity and user base growth in the context of a digital platform. To do this, we synthesize the literature on generativity into two views, social interaction (expansion of ecosystem boundaries) and product view (expansion of product boundaries), that jointly and individually relate to user base growth. Both views help us explain how opening a platform relates to the emergence and resolution of conflicting expectations in a platform ecosystem that result in new functions and expanded use. We adopt a panel vector autoregressive approach combining data from six large transaction platforms that engaged with open-source developer communities. We found that the dominant narrative of generativity engendering growth, although generally supported by our analysis, obscures the fact that the inverse is also true; that is, growth can lead to expansion of product boundaries (inverse generativity) and that generativity can be bounded; that is, growth can stabilize ecosystem boundaries (bounded generativity). Against this background, we propose an extended generativity theory that presents generativity and growth in an integrative view and raises awareness about the limitations of the “unbounded growth” claim. We conclude that there is value in separating the two views of generativity conceptually and analytically, along with their relationship to user base growth, and we call for research on the pathways through which generativity produces growth. History: Ola Henfridsson, Senior Editor; Robert Wayne Gregory, Associate Editor. Supplemental Material: The online appendix is available at https://doi.org/10.1287/isre.2023.1209 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.