Abstract-Many applications require optimizing an unknown, noisy function that is expensive to evaluate. We formalize this task as a multiarmed bandit problem, where the payoff function is either sampled from a Gaussian process (GP) or has low norm in a reproducing kernel Hilbert space. We resolve the important open problem of deriving regret bounds for this setting, which imply novel convergence rates for GP optimization. We analyze an intuitive Gaussian process upper confidence bound ( -algorithm, and bound its cumulative regret in terms of maximal information gain, establishing a novel connection between GP optimization and experimental design. Moreover, by bounding the latter in terms of operator spectra, we obtain explicit sublinear regret bounds for many commonly used covariance functions. In some important cases, our bounds have surprisingly weak dependence on the dimensionality. In our experiments on real sensor data, -compares favorably with other heuristical GP optimization approaches.
Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated.Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations [13,78,31]. The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.
Abstract. We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties such as sparsity or non-negativity. The central role of posterior log-concavity in Bayesian GLMs is emphasized and related to stability issues in EP. In particular, we use our technique to infer the parameters of a point process model for neuronal spiking data from multiple electrodes, demonstrating significantly superior predictive performance when a sparsity assumption is enforced via a Laplace prior distribution.
Approximate Bayesian Gaussian process (GP) classification techniques are powerful nonparametric learning methods, similar in appearance and performance to support vector machines. Based on simple probabilistic models, they render interpretable results and can be embedded in Bayesian frameworks for model selection, feature selection, etc. In this paper, by applying the PAC-Bayesian theorem of McAllester (1999a), we prove distributionfree generalisation error bounds for a wide range of approximate Bayesian GP classification techniques. We also provide a new and much simplified proof for this powerful theorem, making use of the concept of convex duality which is a backbone of many machine learning techniques. We instantiate and test our bounds for two particular GPC techniques, including a recent sparse method which circumvents the unfavourable scaling of standard GP algorithms. As is shown in experiments on a real-world task, the bounds can be very tight for moderate training sample sizes. To the best of our knowledge, these results provide the tightest known distribution-free error bounds for approximate Bayesian GPC methods, giving a strong learning-theoretical justification for the use of these techniques.
Precise models of the robot inverse dynamics allow the design of significantly more accurate, energy-efficient and more compliant robot control. However, in some cases the accuracy of rigidbody models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse dynamics model from measured data poses an interesting alternative. Nonparametric regression methods, such as Gaussian process regression (GPR) or locally weighted projection regression (LWPR), are not as restrictive as parametric models and, thus, offer a more flexible framework for approximating unknown nonlinearities. In this paper, we propose a local approximation to the standard GPR, called local GPR (LGP), for real-time model online-learning by combining the strengths of both regression methods, i.e., the high accuracy of GPR and the fast speed of LWPR.The approach is shown to have competitive learning performance for high-dimensional data while being sufficiently fast for real-time learning. The effectiveness of LGP is exhibited by a comparison with the state-of-the-art regression techniques, such as GPR, LWPR and ν-SVR. The applicability of the proposed LGP method is demonstrated by real-time online-learning of the inverse dynamics model for robot model-based control on a Barrett WAM robot arm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.