Deposition on indoor surfaces is an important removal mechanism for tobacco smoke particles. We report measurements of deposition rates of environmental tobacco smoke particles in a room-size chamber. The deposition rates were determined from the changes in measured concentrations by correcting for the effects of coagulation and ventilation. The airflow turbulent intensity parameter was determined independently by measuring the air velocities in the chamber. Particles These results were used to predict deposition of sidestream smoke particles on interior surfaces. Calculations predict that in 10 hours after smoking one cigarette, 22% of total sidestream particles by mass will deposit on interior surfaces at 0.03 air change per hour (ACH), 6% will deposit at 0.5 ACH, and 3% will deposit at 1 ACH.
Twelve public office buildings were selected for a study of relationships between worker's health symptoms and a number of building, workspace, job, and personal factors. Three buildings were naturally ventilated, three were mechanically ventilated, and six were air conditioned. Information on the prevalences of work‐related symptoms, demographics, and job and personal factors were determined via a questionnaire completed by 880 occupants. Several indoor environmental parameters were measured. Logistic regression models were used to evaluate associations between symptom prevalences and features of the buildings, indoor environments, jobs, and personal factors. A substantial fraction of the occupants in these typical office buildings reported frequent work‐related symptoms. The occupants of the mechanically ventilated and air conditioned buildings had sipifcantly more symptoms than occupants of the naturally ventilated buildings after adjustment for confounding factors. Increased prevalences of some symptoms were associated with several job and workspace factors including: presence of carpet, increased use of carbonless copy paper and photocopiers, space sharing, and distance from a window
Through field studies in large commercial buildings and reviews of building plans, we investigated the effective leakage areas (ELAs), air-leakage rates, and conduction heat gains of duct systems. Different methods for measuring air-leakage rates were also compared. ELAs-of supply ducts ranged from 0.4 to 2.0 cm 2 per square meter of floor area served, and from 1.0 to 4.8 cm 2 per square meter of duct surface area. On a per-unit-floor-area basis, these duct ELAs are comparable to the values measured in residences. The corresponding values of duct leakage class were 60 to 270, much higher than the range of 3 to 12 reported by ASHRAE as attainable for quality duct construction and sealing practices when leakage at connections to duct-mounted equipment is not considered. The measured air-leakage rates as a percentage of the inlet air flow rate varied from 0% to 30%, with most of the measurements falling between 10% and 20%. Large inconsistencies among the air-leakage rates determined from different measurement procedures exemplify the need for further development and evaluation of measurement methods. Heat gains between the outlet of the cooling coils and the supply registers caused supply-air temperatures to increase, on average, by 0.6°C to 2°C. The corresponding values of conduction effectiveness were 0.75 to 0.90; thus, heat conduction decreased the cooling capacity of the supply air exiting registers by 10% to 25%. Because these results are based on studies in only a few buildings, generalizations from these findings are premature.
Most environmental tobacco smoke (ETS) issues from the tips of smoldering cigarettes between puffs. Smokeless ashtrays are designed to reduce ETS exposure by removing particulate and/or gas-phase contaminants from this plume. This paper describes an experimental investigation of the effectiveness of four smokeless ashtrays: two commercial devices and two prototypes constructed by the authors. In the basic experimental protocol, one or more cigarettes was permitted to smolder in a room. Particulate or gas-phase pollutant concentrations were measured in the room air over time. Device effectiveness was determined by comparing pollutant concentrations with the device in use to those obtained with no control device. A lung deposition model was applied to further interpret device effectiveness for particle removal. The commercial ashtrays were found to be substantially ineffective in removing ETS particles because of the use of low-quality filter media and/or the failure to draw the smoke through the filter. A prototype ashtray using HEPA filter material achieved better than 90% particle removal efficiency. Gasphase pollutant removal was tested for only one prototype smokeless ashtray, which employed filters containing activated carbon and activated alumina. Removal efficiencies for the 18 gas-phase compounds measured (above the detection limit) were in the range of 70 to 95%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.