We fabricate long-lived organic light-emitting devices using a 175 μm thick polyethylene terephthalate substrate coated with an organic–inorganic multilayered barrier film and compare the rate of degradation to glass-based devices. The observed permeation rate of water vapor through the plastic substrate was estimated to be 2×10−6 g/m2/day. Driven at 2.5 mA/cm2, we measure a device lifetime of 3800 h from an initial luminance of 425 cd/m2.
Aims NTBC (2-(2-nitro-4-¯uoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione (2-(4-methylsulphonyl-2-nitrobenzoyl)-1,3-cyclohexanedione) are inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD). NTBC has been successfully used as a treatment for hereditary tyrosinaemia type 1 (HT-1), while mesotrione has been developed as an herbicide. The pharmacokinetics of the two compounds were investigated in healthy male volunteers following single oral administration. The aim of the NTBC study was to assess the bioequivalence of two different formulations and to determine the extent of the induced tyrosinaemia. The mesotrione study was performed to determine the magnitude and duration of the effect on tyrosine catabolism. Additionally, the urinary excretion of unchanged mesotrione was measured to assess the importance of this route of clearance and to help develop a strategy for monitoring occupational exposure. Methods A total of 28 volunteers participated in two separate studies with the compounds. In the ®rst study, the relative bioavailability of NTBC from liquid and capsule formulations was compared and the effect on plasma tyrosine concentrations measured. In the second study the pharmacokinetics of mesotrione were determined at three doses. Plasma tyrosine concentrations were monitored and the urinary excretion of mesotrione and tyrosine metabolites was measured. Results Both compounds were well tolerated at the dose levels studied. Peak plasma concentrations of NTBC were rapidly attained following a single oral dose of 1 mg kg x1 body weight of either formulation and the half-life in plasma was approximately 54 h. There were no statistical differences in mean (t s.d.) AUC(0,?) (capsule 602t154 vs solution 602t146 mg ml x1 h) or t 1/2 (capsule 55t13 vs solution 54t8 h) and these parameters supported the bioequivalence of the two formulations. Mesotrione was also rapidly absorbed, with a signi®cant proportion of the dose eliminated unchanged in urine. The plasma half-life was approximately 1 h and was independent of dose and AUC(0,?) and C max increased linearly with dose. Following administration of 1 mg NTBC kg x1 in either formulation, the concentrations of tyrosine in plasma increased to approximately 1100 nmol ml x1 . Concentrations were still approximately 8 times those of background at 14 days after dosing, but had returned to background levels within 2 months of the second dose. Administration of mesotrione resulted in an increase in tyrosine concentrations which reached a maximum of approximately 300 nmol ml x1 following a dose of 4 mg kg x1 body weight. Concentrations returned to those of background within 2 days of dosing. Urinary excretion of tyrosine metabolites was increased during the 24 h immediately following a dose of 4 mg mesotrione kg x1 , but returned to background levels during the following 24 h period. Conclusions NTBC and mesotrione are both inhibitors of HPPD, although the magnitude and duration of their effect on tyrosine concentrations are very different. When normalized for dose...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.