Various synthetic bone substitutes have been developed to reconstruct bone defects. One of the most prevalent ceramics in bone treatment is hydroxyapatite (HA) that is a useful material as bone substitute, however, with a low rate of biodegradation. Its structure allows isomorphic cationic and anionic substitutions to be easily introduced, which can alter the crystallinity, morphology, biocompatibility, and osteoconductivity. The objective of this study was to investigate the in vitro and in vivo biological responses to strontium-containing nanostructured carbonated HA/sodium alginate (SrCHA) spheres (425<ϕ <600 μm) that were used for sinus lifts in rabbits using nanostructured carbonated HA/sodium alginate (CHA) as a reference. Cytocompatibility was determined using a multiparametric assay after exposing murine preosteoblasts to the extracts of these materials. Twelve male and female rabbits underwent bilateral sinus lift procedures and were divided into two groups (CHA or SrCHA) and in two experimental periods (4 and 12 weeks), for microscopic and histomorphometric analyses. The in vitro test revealed the overall viability of the cells exposed to the CHA and SrCHA extracts; thus, these extracts were considered cytocompatible, which was confirmed by three different parameters in the in vitro tests. The histological analysis showed chronic inflammation with a prevalence of macrophages around the CHA spheres after 4 weeks, and this inflammation decreased after 12 weeks. Bone formation was observed in both groups, and smaller quantities of SrCHA spheres were observed after 12 weeks, indicating greater bioresorption of SrCHA than CHA. SrCHA spheres are biocompatible and osteoconductive and undergo bioresorption earlier than CHA spheres.
Among the biomaterials based on calcium phosphate, hydroxyapatite has been widely used due to its biocompatibility and osteoconduction. The substitution of the phosphate group by the carbonate group associated with the absence of heat treatment and low synthesis temperature leads to the formation of carbonated hydroxyapatite (CHA). The association of CHA with other metals (strontium, zinc, magnesium, iron, and manganese) produces amorphous calcium phosphate-containing metals (ACPMetals), which can optimize their properties and mimic biological apatite. This study aimed to evaluate the biocompatibility and biodegradation of ACPMetals in mice subcutaneous tissue. The materials were physicochemically characterized with Fourier Transform InfraRed (FTIR), X-Ray Diffraction (XRD), and Atomic Absorption Spectrometry (AAS). Balb-C mice (n = 45) were randomly divided into three groups: carbonated hydroxyapatite, CHA (n = 15), ACPMetals (n = 15), and without implantation of material (SHAM, n = 15). The groups were subdivided into three experimental periods (1, 3, and 9 weeks). The samples were processed histologically for descriptive and semiquantitative evaluation of the biological effect of biomaterials according to ISO 10993-6:2016. The ACPMetals group was partially biodegradable; however, it presented a severe irritating reaction after 1 and 3 weeks and moderately irritating after nine weeks. Future studies with other concentrations and other metals should be carried out to mimic biological apatite.
For evaluation of the physical aspects in patients with RA, the HAQ is the most accurate. For evaluation of emotional aspects the NHP is the most indicated, although the SF-36 was the only one in the evaluation of general domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.