We propose the use of windowed kriging to enable ordinary kriging to interpolate sampled natural images of much higher resolution. Due to its high computational cost, applying
Abstract-This paper proposes an ultrafast scalable embedded image compression scheme based on discrete cosine transform. It is designed for general network architecture that guarantees maximum end-to-end delay (EED), in particular the Distributed Multimedia Plays (DMP) architecture. DMP is designed to enable people to perform delay-sensitive real-time collaboration from remote places via their own collaboration space (CS). It requires much lower EED to achieve good synchronization than that in existing teleconference systems. A DMP node can drop packets from networked CSs intelligently to guarantee its local delay and degrade visual quality gracefully. The transmitter classifies visual information in an input image into priority ranks. Included in the bitstream as side information, the ranks enable intelligent packet dropping. The receiver reconstructs the image from the remaining packets. Four priority ranks for dropping are provided. Our promising results reveal that, with the proposed compression technique, maximum EED can be guaranteed with graceful degradation of image quality. The given parallel designs for its hardware implementation in FPGA shows its technical feasibility as a module in the DMP architecture.
Abstract-A delay-sensitive, real-time, tele-immersive collaboration for the future requires much lower end-to-end delay (EED) for good synchronization than that for existing teleconference systems. Hence, the maximum EED must be guaranteed, and the visual-quality degradation must be graceful. Distributed Multimedia Plays (DMP) architecture addresses the envisioned collaboration and the challenges. We propose a DCT-based, embedded, ultrafast, quality scalable image-compression scheme for the collaboration on the DMP architecture. A parallel FPGA implementation is also designed to show the technical feasibility.
The background that underlies this work is the envisioned real-time tele-immersive collaboration system for the future that supports delay-sensitive applications involving participants from remote places via their collaboration spaces (CSs). The end-to-end delay as high as 20 ms is required for good synchronization of such applications, for example collaborative dancing and remote conducting of choir. It is much lower than that facilitated by existing teleconference systems. A novel network architecture with delay guarantee, namely Distributed Multimedia Plays (DMP), has been proposed and designed to realize the vision. The maximum low latency is guaranteed because DMP network nodes can drop DMP packets of multimedia data from the CSs due to instantaneous traffic condition. Besides ultrafast processing time, modularity, and scalability must be taken into account in hardware design and implementation of the nodes for seamless incorporation of the modules. These lead us to employing field-programmable gate array (FPGA) due to its substantial computational power and flexibility. This paper presents an FPGA-based platform for the design and implementation of DMP network nodes. It provides a detailed introduction to the platform architecture and the simulation-implementation environment for the design. The modularity of the implemented node is shown by addressing three important modules for packet dropping, 3D warping, and image transform. Our compact implementation of the network node on Xilinx Virtex-6 ML605 mostly consumes very small amount of available resources. Moreover the elementary operations on our implementation takes (much) less than 5 μs as desired to meet the low-latency requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.