Endotoxins of Gram-negative microbes fulfill as components of the outer membrane a vital function for bacterial viability and, if set free, induce in mammalians potent pathophysiological effects. Chemically, they are lipopolysaccharides (LPS) consisting of an O-specific chain, a core oligosaccharide, and a lipid component, termed lipid A. The latter determines the endotoxic activities and, together with the core constituent Kdo, essential functions for bacteria. The primary structure of lipid A of various bacterial origin has been elucidated and lipid A of Escherichia coli has been chemically synthesized. The biological analysis of synthetic lipid A partial structures proved that the expression of endotoxic activity depends on a unique primary structure and a peculiar endotoxic conformation. The biological lipid A effects are mediated by macrophage-derived bioactive peptides such as tumor necrosis factor alpha (TNF). Macrophages possess LPS receptors, and the lipid A regions involved in specific binding and cell activation have been characterized. Synthetic lipid A partial structures compete the specific binding of LPS or lipid A and antagonistically inhibit the production of LPS-induced TNF. LPS toxicity, in general, and the ability of LPS to induce TNF are also suppressed by a recently developed monoclonal antibody (IgG2a), which is directed against an epitope located in the core oligosaccharide. At present we determine molecular and submolecular details of the specificity of the interaction of lipid A with responsive host cells with the ultimate aim to provide pharmacological or immunological therapeutics that reduce or abolish the fatal inflammatory consequences of endotoxicosis.
Malignant melanoma accounts for most of the increasing mortality from skin cancer. Melanoma cells were found to express Fas (also called Apo-1 or CD95) ligand (FasL). In metastatic lesions, Fas-expressing T cell infiltrates were proximal to FasL+ tumor cells. In vitro, apoptosis of Fas-sensitive target cells occurred upon incubation with melanoma tumor cells; and in vivo, injection of FasL+ mouse melanoma cells in mice led to rapid tumor formation. In contrast, tumorigenesis was delayed in Fas-deficient lpr mutant mice in which immune effector cells cannot be killed by FasL. Thus, FasL may contribute to the immune privilege of tumors.
H-Y-specific cytotoxic T cells were first cloned in soft agar and grown over a period of 8 months in media conditioned with supernatants from mouse and rat spleen cells stimulated with concanavalin A. The specificity of cloned cells and their cytolytic potential remained essentially unchanged over the entire culture period. In addition to lysing male target cells expressing H-2Db antigens, the cytolytic cells lysed also male as well as female cells expressing H-2Dd alloantigens. Seventeen out of eighteen subclones derived from the original clone revealed the same activity. The cells divide about every 17--20 h can be obtained in large quantities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.