During the past decades, research in self-healing materials has focused on the improvement in the mechanical properties, making stronger materials, able to bear increasing solicitations. This strategy proved to be costly and in some cases inefficient, since materials continue to fail, and maintenance costs remained high. Instead of preparing stronger materials, it is more efficient to prepare them to heal themselves, reducing repairing costs and prolonging their lifetime. Several different self-healing strategies, applied to different material classes, have been comprehensively studied. When new materials are subject of research, the attention is directed into the formulations, product processing and scale-up possibilities. Efforts to measure self-healing properties have been conducted considering the specific characteristics of each material class. The development of comprehensive service conditions allowing a unified discussion across different materials classes and the standardization of the underlying quantification methods has not been a priority so far. Until recently, the quantification of self-healing ability or efficiency was focused mostly on the macroscale evaluation, while micro and nanoscale events, responsible for the first stage in material failure, received minor attention. This work reviews the main evaluation methods developed to assess self-healing and intends to establish a route for fundamental understanding of the healing phenomena
Among latex-producing plants, mainly the latex of Hevea brasiliensis has been studied in detail so far, while comprehensive comparative studies of latex coagulation mechanisms among the more than 20,000 latex-bearing plant species are lacking. In order to give new insights into the potential variety of coagulation mechanisms, the untreated natural latices of five latex-bearing plants from the families Euphorbiaceae, Moraceae and Campanulaceae were visualised using Cryo-SEM and their particle size compared using the laser diffraction method. Additionally, the laticifers of these plants species were examined in planta via Cryo-SEM. Similar latex particle sizes and shape were found in Ficus benjamina and Hevea brasiliensis. Hence, and due to other similarities, we hypothesize comparable, mainly chemical, coagulation mechanisms in these two species, whereas a physical coagulation mechanism is proposed for the latex of Euphorbia spp. The latter mechanism is based on the huge amount of densely packed particles that after evaporation of water build a large surface area, which accelerates the coagulation procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.