We present a novel approach for interactive navigation in complex 3D synthetic environments using path planning. Our algorithm precomputes a global roadmap of the environment by using a variant of randomized motion planning algorithm along with a reachability-based analysis. At runtime, our algorithm performs graph searching and automatically computes a collision-free and constrained path between two user specified locations. It also enables local user-steered exploration, subject to motion constraints and integrates these capabilities in the control loop of 3D interaction. Our algorithm only requires the scene geometry, avatar orientation, and parameters relating the avatar size to the model size. The performance of the preprocessing algorithm grows as a linear function of the model size. We demonstrate its performance on two large environments: a power plant and a factory room. , large models gorithm allows the user to interactively steer the avatar through the model in a driving mode, while imposing natural constraints on the avatar's movement to ensure walk-like motion, across the floor, stairs, or other walkable surfaces in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.