Fucoidans from brown macroalgae are sulfated fucose-rich polysaccharides, that have several beneficial biological activities, including anti-inflammatory and anti-tumor effects. Controlled enzymatic depolymerization of the fucoidan backbone can help produce homogeneous, defined fucoidan products for structure-function research and pharmaceutical uses. However, only a few endo-fucoidanases have been described. This article reports the genome-based discovery, recombinant expression in Escherichia coli, stabilization, and functional characterization of a new bacterial endo-α-(1,4)-fucoidanase, Fhf1, from Formosa haliotis. Fhf1 catalyzes the cleavage of α-(1,4)-glycosidic linkages in fucoidans built of alternating α-(1,3)-/α-(1,4)-linked l-fucopyranosyl sulfated at C2. The native Fhf1 is 1120 amino acids long and belongs to glycoside hydrolase (GH) family 107. Deletion of the signal peptide and a 470 amino acid long C-terminal stretch led to the recombinant expression of a robust, minimized enzyme, Fhf1Δ470 (71 kDa). Fhf1Δ470 has optimal activity at pH 8, 37–40 °C, can tolerate up to 500 mM NaCl, and requires the presence of divalent cations, either Ca2+, Mn2+, Zn2+ or Ni2+, for maximal activity. This new enzyme has the potential to serve the need for controlled enzymatic fucoidan depolymerization to produce bioactive sulfated fucoidan oligomers.
The structural elucidation of lipopolysaccharides (LPSs) from Gram‐negative marine bacteria, along with the assessment of their immunological properties, is a fascinating and active research field. Such studies can aid understanding of adaptation phenomena that occur in the marine environment, but they can also open up new perspectives on the design and development of new immunoregulatory drugs. In this paper, we report the structural characterization of the lipid A component of the LPS isolated from the marine bacterium Cobetia pacifica KMM 3879T, which is characterized by a family of structures differing in their acylation patterns. The structural assignment was achieved through extensive chemical analysis and matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. Moreover, cellular immunology studies on the LPS highlighted its low immunostimulatory impact, as well as a very interesting and promising inhibitory activity of the toxic effects of Escherichia coli LPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.