Graph-structured data is used to represent large information collections, called knowledge graphs, in many applications. Their exact format may vary, but they often share the concept that edges can be annotated with additional information, such as validity time or provenance information. Property Graph is a popular graph database format that also provides this feature. We give a formalisation of a generalised notion of Property Graphs, called multiattributed relational structures (MARS), and introduce a matching knowledge representation formalism, multi-attributed predicate logic (MAPL). We analyse the expressive power of MAPL and suggest a simpler, rule-based fragment of MAPL that can be used for ontological reasoning on Property Graphs.
Knowledge graphs have recently become the state-of-the-art tool for representing the diverse and complex knowledge of the world. Examples include the proprietary knowledge graphs of companies such as Google, Facebook, IBM, or Microsoft, but also freely available ones such as YAGO, DBpedia, and Wikidata. A distinguishing feature of Wikidata is that the knowledge is collaboratively edited and curated. While this greatly enhances the scope of Wikidata, it also makes it impossible for a single individual to grasp complex connections between properties or understand the global impact of edits in the graph. We apply Formal Concept Analysis to efficiently identify comprehensible implications that are implicitly present in the data. Although the complex structure of data modelling in Wikidata is not amenable to a direct approach, we overcome this limitation by extracting contextual representations of parts of Wikidata in a systematic fashion. We demonstrate the practical feasibility of our approach through several experiments and show that the results may lead to the discovery of interesting implicational knowledge. Besides providing a method for obtaining large real-world data sets for FCA, we sketch potential applications in offering semantic assistance for editing and curating Wikidata.
In modelling real-world knowledge, there often arises a need to represent and reason with meta-knowledge. To equip description logics (DLs) for dealing with such ontologies, we enrich DL concepts and roles with finite sets of attribute–value pairs, called annotations, and allow concept inclusions to express constraints on annotations. We investigate a range of DLs starting from the lightweight description logic EL, covering the prototypical ALCH, and extending to the very expressive SROIQ, the DL underlying OWL 2 DL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.