Ground magnetic survey profiles across a soil-covered and weathered mafic dike in sedimentary host rock not only permit to delineate the strike, width and burial depth of the intrusive basalt sheet, but also reflect the subsurface deformation of its clayey weathering products. We illustrate this finding and its practical geomorphological applicability by an example from the mid-German Heldburg Dike Swarm, where blue- and olive-gray basalt-derived clays inherited not just the dike space previously occupied by the basalt, but also large parts of its magnetic iron minerals and their strong induced and remanent magnetization. Such ductile basaltic “marker soils” deform and move with the surrounding low-magnetic host soils, but remain distinguishable by their contrasting colors and high magnetic susceptibility. Ground magnetic surveys can therefore delineate soil creep distance at meter- and basalt weathering depth at decimeter-precision. Magnetic mapping of a weathered dike’s cross-section from an exploration trench by in-situ susceptometry permits to analyze past soil deformation in great detail. Weathering and solifluction transforms the simple “vertical sheet” anomalies of dikes into complex, but still interpretable composite patterns, providing a new and promising exploratory approach for field studies concerned with soil creep and pedoturbation.
An important element of the process of aircraft certification is the demonstration of the crashworthiness of the structure in the event of an emergency landing on water, also referred to as ditching. Novel numerical simulation methods, that incorporate the interaction between fluid and structure, open up a promising way to model ditching in full scale. This study focuses on two main issues of high-fidelity ditching simulations: the development of a suitable fluid-structure coupling framework and the generation of the structural model of the aircraft. The first issue is addressed by implementing a partitioned coupling approach, which combines a finite volume hydrodynamic fluid solver as well as a finite element structural solver. The developed framework is validated by means of two ditching-like experiments, which consider the drop test of a rigid cylinder and a deformable cylindrical shell. The results of the validation studies indicate that an alternative to the standard Dirichlet-Neumann partitioning approach is needed if a strong added-mass effect is present. For the full-scale simulation of aircraft ditching, structural models become more complex and have to account for damage. Due to its high localization, the damage creates large differences in model scale and usually entails severe non-linearities in the model. To address the issue of increasing computational effort for such models, the process of developing a multi-scale model for the simulation of the failure of fuselage frames is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.