SUMMARYA shear-flexible isogeometric Reissner-Mindlin shell formulation using NURBS basis functions is introduced, which is used for the demonstration of a coupling approach for multiple non-conforming patches. The six degrees of freedom formulation uses the exact surface normal vectors and curvature. The shell formulation is implemented in an isogeometric analysis framework for computation of structures composed of multiple geometric entities. To enable local model refinement as well as non-matching domains coupling a conservative multi-patch approach using Lagrange multipliers for structured NURBS patches is presented. Here, an additional border frame mesh is used to couple geometries during structural analyses. This frame interface approach avoids the problem of excessive constraints when multiple patches are coupled at one point. First, the shell formulation is verified with several reference cases. Then the influence of the frame interface discretization and frame penalty stiffness on the smoothness of the results is investigated. The effects of the perturbed Lagrangian method in combination with the frame interface approach is shown. In addition, results of models with T-joint interface connections and perpendicular stiffener patches are presented.
An important element of the process of aircraft certification is the demonstration of the crashworthiness of the structure in the event of an emergency landing on water, also referred to as ditching. Novel numerical simulation methods, that incorporate the interaction between fluid and structure, open up a promising way to model ditching in full scale. This study focuses on two main issues of high-fidelity ditching simulations: the development of a suitable fluid-structure coupling framework and the generation of the structural model of the aircraft. The first issue is addressed by implementing a partitioned coupling approach, which combines a finite volume hydrodynamic fluid solver as well as a finite element structural solver. The developed framework is validated by means of two ditching-like experiments, which consider the drop test of a rigid cylinder and a deformable cylindrical shell. The results of the validation studies indicate that an alternative to the standard Dirichlet-Neumann partitioning approach is needed if a strong added-mass effect is present. For the full-scale simulation of aircraft ditching, structural models become more complex and have to account for damage. Due to its high localization, the damage creates large differences in model scale and usually entails severe non-linearities in the model. To address the issue of increasing computational effort for such models, the process of developing a multi-scale model for the simulation of the failure of fuselage frames is presented.
An important element of the process of aircraft certification is the demonstration of the crashworthiness of the structure in the event of an emergency landing on water, also referred to as ditching. Novel numerical simulation methods that incorporate the interaction between fluid and structure open up a promising way to model ditching in full scale. This study presents a numerical framework for the simulation of ditching on a high–fidelity level. A partitioned approach that combines a finite volume hydrodynamic fluid solver as well as an finite element structural solver is implemented using a Python-based distributed coupling environment [1]. High demands are placed both on the fluid and the structural solver. The fluid solver needs to account for hydrodynamic effects such as cavitation in order to correctly compute the ditching loads acting on the aircraft structure. In the structural model, the highly localized damage induces nonlinearities and large differences in model scale. In order to reduce the computational effort a reduced order model is used to model the failure of fuselage frames. The fluid-structure coupling requires an explicit coupling scheme. It is shown that the standard Dirichlet-Neumann approach exhibits unstable behaviour if a strong added-mass effect is present, as is the case in aircraft ditching. This indicates a need for methods other than the standard Dirichlet-Neumann approach [2].
For a set of applications, thin metallic sheets are used in fibre composite materials to reach higher load introduction capacities. The paper deals with a simplified generic problem of this kind. The main subject is the comparison of results of three types of models, namely, a 1D-, 2D- and a 3D version. What can be shown is the fact that results are quite similar with respect to behaviour along the loading direction, but very different in the actual values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.