The chemotherapeutic drugs, loaded in nanocarriers, have recently attracted the pharmaceutical industries due to their limited adverse side effects. The objective of the current study was to incorporate the ifosfamide (IFO) into two different essential oils-based nanoemulsions, lemon (LEM-IFO) and salvia (SAL-IFO). The antiproliferation activities of the resulted formulas were evaluated in the MCF-7 breast cancer cells and HeLa cervical cancers cells. The cytotoxic effect of the NE formulas was detected by the MTT assay, DAPI stain and light microscopy. The z-average diameters range of LEM-IFO and SAL-IFO, determined by the zetasizer, were 49.15–61.81 nm and 56.64–64.62 nm, respectively. The half maximal inhibitory concentration (IC50) of LEM-IFO and SAL-IFO, applied into the HeLa cells, were 0.165 ± 0.025 and 0.141 ± 0.035 mM, respectively, whereas the IC50 of LEM-IFO and SAL-IFO subjected into the MCF-7 cells were 0.200 ± 0.005 mM and 0.270 ± 0.025 mM, respectively. The IC50 of the free IFO was markedly larger than LEM-IFO and SAL-IFO when applied into MCF-7 cells (9.20 ± 2.01 mM) and HeLa cells (7.69 ± 1.88 mM). Among the tested formulas, LEM-IFO and SAL-IFO have the greatest apoptotic effect on the MCF-7 and HeLa cells, respectively. Solubilizing the IFO in the essential oils-based NE has ameliorated the antitumor efficacy of IFO.
Summary
Doxorubicin (DOX) is the most commonly used anticancer drug; however, it has limited use because prolonged administration may result in severe cardiotoxicity. Simvastatin (SIM), generally prescribed for hypercholesterolaemia, has also shown salubrious results in the monotherapy or combinational drug therapy of different cancers in various models. Nanoparticle drug delivery systems are a novel way of improving therapeutics and also improving the absorption and specificity of drugs towards tumour cells. In this study, we exploited this technology to increase drug specificity and minimize imminent adverse effects. In this study, the antitumour activity of the combination formulas of DOX and SIM, either loaded in water (DOX‐SIM‐Solution) or nanoemulsions (NEs) (DOX‐SIM‐NE), was evaluated in a Swiss albino mouse model of Ehrlich ascites carcinoma. The anticancer effect was assessed by quantifying the change in body weight, mean survival time, and percent increase in lifespan (%ILS), determining haematological and serum biochemical parameters (liver function test, kidney function test and lipid profile parameters) as well as studying the histopathological alterations in liver tissues. We observed a clear increase in %ILS of the DOX‐SIM‐Solution group (265.30) that was double the %ILS of the DOX‐SIM‐NE group (134.70). However, DOX‐SIM‐NE had a non‐toxic effect on the haematological parameters, whereas DOX‐SIM‐Solution increased the levels of haemoglobin and lymphocytes. Furthermore, the encapsulation of SIM and DOX into NEs improved the levels of all serum biochemical parameters compared to the DOX‐SIM‐Solution. A reduction in the side effects of DOX‐SIM‐NE on the liver was also established using light microscopy, which revealed that the morphologies of the hepatocytes of the mice were less affected by administration of the DOX‐SIM‐NE treatment than with the DOX‐SIM‐Solution treatment. The study showed that incorporating SIM into the DOX‐loaded‐NE formulation remarkably improved its efficiency and simultaneously reduced its adverse effects.
Combining more than one anticancer agent in a nanocarrier is beneficial in producing a formula with a low dose and limited adverse side effects. The current study aimed to formulate docetaxel (DTX) and thymoquinone (TQ) in borage oil-based nanoemulsion (B-NE) and evaluate its potential in impeding the growth of breast cancer cells. The formulated B-NE and the combination (DTX + TQ) B-NE were prepared by the ultra-sonication method and physically characterized by the dynamic light scattering techniques. The cytotoxicity analyses of (DTX + TQ) B-NE in MCF-7 and MDA-MB-231 cells were evaluated in vitro by using the SRB assay. Cell death mechanisms were investigated in terms of apoptosis and autophagy pathways by flow cytometry. The optimum mean droplet sizes formulated for blank B-NE and the (DTX + TQ) B-NE were 56.04 ± 4.00 nm and 235.00 ± 10.00 nm, respectively. The determined values of the half-maximal inhibitory concentration (IC50) of mixing one-half amounts of DTX and TQ in B-NE were 1.15 ± 0.097 µM and 0.47 ± 0.091 µM in MCF-7 and MDA-MB-231 cells, respectively, which were similar to the IC50 values of the full amount of free DTX in both tested cell lines. The treatment with (DTX + TQ) B-NE resulted in a synergistic effect on both tested cells. (DTX + TQ) B-NE induced apoptosis that was integrated with the stimulation of autophagy. The produced formulation enhances the DTX efficacy against human breast cancer cells by reducing its effective dose, and thus it could have the potential to minimize the associated toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.