Despite recent advancements in the treatment of hematologic malignancies and the emergence of newer and more sophisticated therapeutic approaches such as immunotherapy, long-term overall survival remains unsatisfactory. Metabolic alteration, as an important hallmark of cancer cells, not only contributes to the malignant transformation of cells, but also promotes tumor progression and metastasis. As an immune-escape mechanism, the metabolic adaptation of the bone marrow microenvironment and leukemic cells is a major player in the suppression of anti-leukemia immune responses. Therefore, metabolic rewiring in leukemia would provide promising opportunities for newer therapeutic interventions. Several therapeutic agents which affect essential bioenergetic pathways in cancer cells including glycolysis, β-oxidation of fatty acids and Krebs cycle, or anabolic pathways such as lipid biosynthesis and pentose phosphate pathway, are being tested in various types of cancers. So far, numerous preclinical or clinical trial studies using such metabolic agents alone or in combination with other remedies such as immunotherapy are in progress and have demonstrated promising outcomes. In this review, we aim to argue the importance of metabolic alterations and bioenergetic pathways in different types of leukemia and their vital roles in disease development. Designing treatments based on targeting leukemic cells vulnerabilities, particularly in nonresponsive leukemia patients, should be warranted.
Glycyrrhizic acid (GA), the major bioactive component of glycyrrhiza, possesses anti-inflammatory, anti-allergic, and immunomodulatory activities. This study aimed to investigate the in vitro anti-allergic effect of GA through the OX40 receptor in patients with allergic rhinitis. Purified naive CD4+ T cells of patients with allergic rhinitis (n = 12) were activated with anti-CD3/anti-CD28 with and without anti-OX40 agonist mAbs and then treated with 50, 100, and 200 μM GA and 0.1 μM dexamethasone. Cells were incubated (72 h) to measure cell proliferation. Expression of OX40 in anti-OX40 mAb stimulated CD4+ T cells was evaluated by flow cytometry. mRNA expression of the OX40 receptor and T-bet, GATA-3, and forkhead box P3 (FoxP3) transcriptional factors were measured by a quantitative polymerase chain reaction. The levels of interleukin (IL)-4, IL-10, and interferon-γ (IFN-γ) were also measured. GA inhibited significantly the augmented T cell proliferation induced with anti-OX40 mAb. Protein and gene expression of OX40 was also decreased significantly. Dexamethasone and GA inhibited T-bet and GATA-3 genes expression, but this inhibition was only significant for GATA-3. In contrast, enhanced gene expression of FoxP3 was seen using 200 μM GA and dexamethasone. The levels of IL-4, IL-10, and IFN-γ decreased after treatment with both dexamethasone and GA, but the ratio of IFN-γ/IL-4 (Th1/Th2 balance) increased significantly due to 200 μM GA treatment. This study suggests that GA may have a therapeutic effect on allergic rhinitis, partly by modulation of the Th1/Th2 balance through suppression of OX40 and increasing the activity of regulatory T cells.
Multiple Sclerosis (MS) is the most common demyelinating disease with inflammatory demyelination in the central nerve system. Besides the defect in the myelin repair process, the balance change in inflammatory and anti- inflammatory cytokines is one of the most significant factors in MS pathogenesis. This study aimed at evaluating the effects of co-overexpressing beta interferon (IFN-β) and Leukemia inhibitory factor (LIF) in human adipose-derived stem cells (IFN-β/LIF-hADSCs) on the experimental autoimmune encephalomyelitis (EAE). 12 days after the induction of EAE on female mice C57Bl/6 with MOG35-55 and the emergence of primary clinical signs, the IFN-β/LIF-hADSCs were injected into the mice tail vein of the EAE mice. The mice were sacrificed after 32 days and the spinal cords of the experimental groups were dissected out for the histopathologic and real-time RT-PCR studies. Here, we showed that the clinical scores and infiltration of mononuclear cells of treated mice with IFN-β/LIF-hADSCs were decreased significantly. Demyelination and the number of Olig2+ and MBP+ cells were significantly increased in the test (IFN-β/LIF-hADSCs) group. The findings revealed that the pattern of inflammatory and anti- inflammatory cytokines gene expression in the IFN-β/LIF-hADSCs group was reversed compared to the control group. Overexpression of LIF as a neurotrophic and IFN-β as an anti-inflammatory cytokine in hADSCs increases the immunomodulatory effect of hADSCs reduces the extent of demyelination, improves the number of Olig2+ cells, and also increases the amount of MBP protein which can increase the production of myelin in EAE model. This, besides hADSCs capacity for proliferation and differentiation, might enhance the treatment efficacy and provide a promising candidate for stem cell-based gene therapy of MS therapy in the future.
Background: It is hypothesized that increased inflammatory markers in keratoconus (KC) may be one of the causes of corneal damage. The aim of our study was to the measurement of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL)-6 in tear of patients with KC and investigate their relationship with the severity of KC. Materials and Methods: The current study was performed on KC patients and healthy controls with a case-control setting. Tear levels of TNF-α and IL-6 were measured after collecting the tears from the tear lake using a filter paper via Schirmer I method without anesthesia. Results: Eighty-one KC patients (mean age 29.45 ± 5.06 years) and 85 controls (mean age 28.01 ± 5.14 years) were enrolled. The mean levels of IL-6 and TNF-α were 26.77 ± 8.16, and 34.58 ± 9.82 pg/ml in the healthy group and 103.22 ± 51.94, and 183.76 ± 54.61 pg/ml in the KC group, respectively (P < 0.001). There was a significant relationship between the severity of the KC and the mean levels of IL-6 TNF-α in the case group (P < 0.001). Conclusion: Our results indicated that the mean levels of IL-6 and TNF-α are significantly higher in KC than the healthy group, and the disease severity was significantly associated with TNF-α and IL-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.