Multiple objective assessment of image-quality (OAIQ)-based studies have reported that several deep-learning (DL)-based denoising methods show limited performance on signal-detection tasks. Our goal was to investigate the reasons for this limited performance. To achieve this goal, we conducted a task-based characterization of a DL-based denoising approach for individual signal properties. We conducted this study in the context of evaluating a DL-based approach for denoising single photon-emission computed tomography (SPECT) images.The training data consisted of signals of different sizes and shapes within a clustered-lumpy background, imaged with a 2D parallel-hole-collimator SPECT system. The projections were generated at normal and 20% low-count level, both of which were reconstructed using an ordered-subset-expectation-maximization (OSEM) algorithm. A convolutional neural network (CNN)-based denoiser was trained to process the low-count images. The performance of this CNN was characterized for five different signal sizes and four different signal-tobackground ratio (SBRs) by designing each evaluation as a signal-known-exactly/background-known-statistically (SKE/BKS) signal-detection task. Performance on this task was evaluated using an anthropomorphic channelized Hotelling observer (CHO). As in previous studies, we observed that the DL-based denoising method did not improve performance on signal-detection tasks. Evaluation using the idea of observer-study-based characterization demonstrated that the DL-based denoising approach did not improve performance on the signal-detection task for any of the signal types. Overall, these results provide new insights on the performance of the DL-based denoising approach as a function of signal size and contrast. More generally, the observer study-based characterization provides a mechanism to evaluate the sensitivity of the method to specific object properties, and may be explored as analogous to characterizations such as modulation transfer function for linear systems. Finally, this work underscores the need for objective task-based evaluation of DL-based denoising approaches.
Dipole-spread function (DSF) engineering reshapes the images of a microscope to maximize the sensitivity of measuring the 3D orientations of dipole-like emitters. However, severe Poisson shot noise, overlapping images, and simultaneously fitting high-dimensional information–both orientation and position–greatly complicates image analysis in single-molecule orientation-localization microscopy (SMOLM). Here, we report a deep-learning based estimator, termed Deep-SMOLM, that achieves superior 3D orientation and 2D position measurement precision within 3% of the theoretical limit (3.8° orientation, 0.32 sr wobble angle, and 8.5 nm lateral position using 1000 detected photons). Deep-SMOLM also demonstrates state-of-art estimation performance on overlapping images of emitters, e.g., a 0.95 Jaccard index for emitters separated by 139 nm, corresponding to a 43% image overlap. Deep-SMOLM accurately and precisely reconstructs 5D information of both simulated biological fibers and experimental amyloid fibrils from images containing highly overlapped DSFs at a speed ~10 times faster than iterative estimators.
Deep-learning (DL)-based methods have shown significant promise in denoising myocardial perfusion SPECT images acquired at low dose. For clinical application of these methods, evaluation on clinical tasks is crucial. Typically, these methods are designed to minimize some fidelity-based criterion between the predicted denoised image and some reference normal-dose image. However, while promising, studies have shown that these methods may have limited impact on the performance of clinical tasks in SPECT. To address this issue, we use concepts from the literature on model observers and our understanding of the human visual system to propose a DL-based denoising approach designed to preserve observer-related information for detection tasks. The proposed method was objectively evaluated on the task of detecting perfusion defect in myocardial perfusion SPECT images using a retrospective study with anonymized clinical data. Our results demonstrate that the proposed method yields improved performance on this detection task compared to using low-dose images. The results show that by preserving task-specific information, DL may provide a mechanism to improve observer performance in low-dose myocardial perfusion SPECT.
Background Artificial intelligence‐based methods have generated substantial interest in nuclear medicine. An area of significant interest has been the use of deep‐learning (DL)‐based approaches for denoising images acquired with lower doses, shorter acquisition times, or both. Objective evaluation of these approaches is essential for clinical application. Purpose DL‐based approaches for denoising nuclear‐medicine images have typically been evaluated using fidelity‐based figures of merit (FoMs) such as root mean squared error (RMSE) and structural similarity index measure (SSIM). However, these images are acquired for clinical tasks and thus should be evaluated based on their performance in these tasks. Our objectives were to: (1) investigate whether evaluation with these FoMs is consistent with objective clinical‐task‐based evaluation; (2) provide a theoretical analysis for determining the impact of denoising on signal‐detection tasks; and (3) demonstrate the utility of virtual imaging trials (VITs) to evaluate DL‐based methods. Methods A VIT to evaluate a DL‐based method for denoising myocardial perfusion SPECT (MPS) images was conducted. To conduct this evaluation study, we followed the recently published best practices for the evaluation of AI algorithms for nuclear medicine (the RELAINCE guidelines). An anthropomorphic patient population modeling clinically relevant variability was simulated. Projection data for this patient population at normal and low‐dose count levels (20%, 15%, 10%, 5%) were generated using well‐validated Monte Carlo‐based simulations. The images were reconstructed using a 3‐D ordered‐subsets expectation maximization‐based approach. Next, the low‐dose images were denoised using a commonly used convolutional neural network‐based approach. The impact of DL‐based denoising was evaluated using both fidelity‐based FoMs and area under the receiver operating characteristic curve (AUC), which quantified performance on the clinical task of detecting perfusion defects in MPS images as obtained using a model observer with anthropomorphic channels. We then provide a mathematical treatment to probe the impact of post‐processing operations on signal‐detection tasks and use this treatment to analyze the findings of this study. Results Based on fidelity‐based FoMs, denoising using the considered DL‐based method led to significantly superior performance. However, based on ROC analysis, denoising did not improve, and in fact, often degraded detection‐task performance. This discordance between fidelity‐based FoMs and task‐based evaluation was observed at all the low‐dose levels and for different cardiac‐defect types. Our theoretical analysis revealed that the major reason for this degraded performance was that the denoising method reduced the difference in the means of the reconstructed images and of the channel operator‐extracted feature vectors between the defect‐absent and defect‐present cases. Conclusions The results show the discrepancy between the evaluation of DL‐based methods with fidelity‐...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.