Dehydrohelicenes are some of the most attractive chiroptical materials with unique helical chirality. However, to our knowledge, there are no prior reports on their direct construction by asymmetric methods. In this work, sequential synthesis of aza-oxa-dehydro[7]helicenes via the electrochemical oxidative hetero-coupling of 3-hydoxycarbazoles and 2-naphthols followed by dehydrative cyclization and intramolecular C–C bond formation has been realized. In addition, an efficient enantioselective synthesis through chiral vanadium-catalyzed hetero-coupling and electrochemical oxidative transformations afforded heterodehydro[7]helicene without any racemization. The obtained dehydro[7]helicenes showed intense blue-colored circularly polarized luminescence (|glum| ≈ 2.5 × 10−3 at 433 nm). Thermodynamic and kinetic studies of the racemization barrier of heterodehydro[7]helicenes indicated significant chiral stability with ΔG‡> 140 kJ mol−1.
A Highly efficient synthesis of α-ketiminophosphonates has been established for the electrochemical oxidation of α-amino phosphonates with the utilization of machine-learning-assisted simultaneous multiparameter screening. After brief experimental screening, the Bayesian...
The electrochemical synthesis of hetero [7]helicenes including pyrrole and furan rings has been established. A single electrochemical operation led to an oxidative heterocoupling and dehydrative cyclization sequence to afford oxaza [7]helicenes in 50-86% yields with 45-77% Faradic efficiencies. Their derivatization and chiroptical properties were also investigated.
A novel double aza-oxa[7]helicene was synthesized from the commercially available N1,N4-di(naphthalen-2-yl)benzene-1,4-diamine and p-benzoquinone in two steps. Combining the acid-mediated annulation with the electrochemical sequential reaction (oxidative coupling and dehydrative cyclization) afforded this double hetero[7]helicene. Moreover, the structural and optical features of this molecule have been studied using X-ray crystallographic analysis, and the absorption and emission behaviors were rationalized based on DFT calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.