The development of innovative drug delivery systems, versatile to different drug characteristics
with better effectiveness and safety, has always been in high demand. Chitosan, an
aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of
the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives
can be used for direct compression tablets, as disintegrant for controlled release or for improving
dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with
enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and
ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere
technology in hydrogel formulation is particularly relevant to pharmaceutical product development.
This review highlights the suitability and future of chitosan in drug delivery with special
attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable
non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation
have made this polymer an attractive candidate for developing novel drug delivery systems
including various advanced therapeutic applications such as gene delivery, DNA based drugs,
organ specific drug carrier, cancer drug carrier, etc.
In this study, crystalline cellulose was prepared through hydrolysis of jute fiber and was used as reinforcement of gelatin-based biocomposite film. The effects of crystalline celluloses loading on the morphology, mechanical properties and water sensitivity of the biocomposite were investigated by means of Scanning electron microscopy, tensile strength testing and water absorption testing. The developed biocomposite film showed homogeneous dispersion of crystalline celluloses within the gelatin matrix and strong interfacial adherence between matrix and reinforcement. A significant increase in tensile strength and E Modulus was also found (tensile strength was 25.4 MPa for pure gelatin and 48.2 MPa for 2% crystalline celluloses/gelatin film at 45% relative humidity), which was further induced by gamma radiation. The resulting biocomposite film also showed a higher water resistance and excellent biocompatibility. Therefore, crystalline celluloses played an important role in improving the mechanical properties as well as water resistance of the biocomposite film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.