The strengthening of electric energy security and the reduction of greenhouse gas emissions have gained enormous momentum in previous decades. The integration of large-scale intermittent renewable energy resources (RER) like wind energy into the existing electricity grids has increased significantly in the last decade. However, this integration poses many operational and control challenges that hamper the reliable and stable operation of the grids. This article aims to review the reported challenges caused by the integration of wind energy and the proposed solutions methodologies. Among the various challenges, the generation uncertainty, power quality issues, angular and voltage stability, reactive power support, and fault ride-through capability are reviewed and discussed. Besides, socioeconomic, environmental, and electricity market challenges due to the grid integration of wind power are also investigated. Many of the solutions used and proposed to mitigate the impact of these challenges, such as energy storage systems, wind energy policy, and grid codes, are also reviewed and discussed. This paper will assist the enthusiastic readers in seeing the full picture of wind energy integration challenges. It also puts in the hands of policymakers all aspects of the challenges so that they can adopt sustainable policies that support and overcome the difficulties facing the integration of wind energy into electricity grids. INDEX TERMS Angular stability, energy storage system, fault ride-through capability, frequency response, grid codes, reactive power support, voltage stability, wind intermittency. • Induction generator (squirrel cage (type 1) and wound rotor (type 2))
A significant growth in solar photovoltaic (PV) installation has observed during the last decade in standalone and grid-connected power generation systems. The solar PV system has a non-linear output characteristic because of weather intermittency, which tends to have a substantial effect on overall PV system output. Hence, to optimize the output of a PV system, different maximum power point tracking (MPPT) techniques have been used. But, the confusion lies while selecting an appropriate MPPT, as every method has its own merits and demerits. Therefore, a proper review of these techniques is essential. A "Google Scholar" survey of the last five years (2015-2020) was conducted. It has found that overall seventy-one review articles are published on different MPPT techniques; out of those seventy-one, only four are on uniform solar irradiance, seven on non-uniform and none on hybrid optimization MPPT techniques. Most of them have discussed the limited number of MPPT techniques, and none of them has discussed the online and offline under uniform and hybrid MPPT techniques under non-uniform solar irradiance conditions all together in one. Unfortunately, very few attempts have made in this regard. Therefore, a comprehensive review paper on this topic is need of time, in which almost all the well-known MPPT techniques should be encapsulated in one paper. This article focuses on classifications of online, offline, and hybrid optimization MPPT algorithms, under the uniform and non-uniform irradiance conditions. It summarizes various MPPT methods along with their mathematical expression, operating principle, and block diagram/flow charts. This research will provide a valuable pathway to researchers, energy engineers, and strategists for future research and implementation in the field of maximum power point tracking optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.