Bacterial pathogens are fostered in and transmitted through wastewater. Hence, monitoring their impact on sanitation and hygiene is imperative. As part of the monitoring process, culture-based methodologies are primarily used, which centre on the use of selective and differential media. Media available today are, at best, difficult to formulate and, at worst, prohibitively expensive. To address this lacuna, the study proposes a selective and differential medium for Klebsiella spp. Klebsiella blue agar (KBA) is completely selective against selected gram-positive bacteria (Bacillus spp., Staphylococcus aureus) and a few gram-negative bacteria (Acinetobacter baumanii, Serratia marcescens). On the other hand, it supports the growth of the chosen members of the Klebsiella pneumoniae species-complex with a characteristic green colouration. Methylene blue, tryptophan, and bile salt make up the selective components of KBA. Moreover, methylene blue, 0.6% NaCl, and glycerol render it differential. KBA was more selective than HiCrome™ Klebsiella Selective Agar Base (KSA) in replica plating experiments. KBA promoted only 157 CFUs against 209 CFUs in KSA when stamped with 253 CFUs grown on LB. The colonies so isolated were predominantly Klebsiella spp., on identification through colony polymerase chain reaction. Moreover, the differential nature of KBA distinguished Klebsiella aerogenes from other species. On the contrary, KSA lodged colonies indistinguishable from each other and Klebsiella spp. Due to its ease of formulation, high selectivity, differential nature, and cost-effective composition, KBA is a viable option for the routine culture of Klebsiella spp. in environmental and clinical settings. Key points • Formulated a novel selective and differential media for Klebsiella spp., named Klebsiella Blue agar • Facile formulation methodology • Can be employed to isolate Klebsiella spp. from complex sources such as wastewater
We report the draft genome sequence of a putative probiotic strain, Lactobacillus fermentum ASBT-2, isolated from domestic sewage in Kerala, India. The strain showed probiotic properties (tolerance to low pH and bile salts, binding to host matrix) and reduced the coliform count by 90% in a biofilter used to treat wastewater.
Background: Chitin is the main component of fungal, protozoan and helminth cell wall. They help to maintain the structural and functional characteristics of these organisms. The chitin wall is dynamic and is repaired, rearranged and synthesized as the cells develop. Active synthesis can be noticed during cytokinesis, laying of primary septum, maintenance of lateral cell wall integrity and hyphal tip growth. Chitin synthesis involves coordinated action of two enzymes namely, chitin synthase (that lays new cell wall) and chitinase (that removes the older ones). Since chitin synthase is conserved in different eukaryotic microorganisms that can be a ‘soft target’ for inhibition with small molecules. When chitin synthase is inhibited, it leads to the loss of viability of cells owing to the self- disruption of the cell wall by existing chitinase. Methods: In the described study, small molecules from plant sources were screened for their ability to interfere with hyphal tip growth, by employing Hyphal Tip Burst assay (HTB). Aspergillus niger was used as the model organism. The specific role of these small molecules in interfering with chitin synthesis was established with an in-vitro method. The enzyme required was isolated from Aspergillus niger and its activity was deduced through a novel method involving non-radioactively labelled substrate. The activity of the potential lead molecules were also checked against Candida albicans and Caenorhabditis elegans. The latter was adopted as a surrogate for the pathogenic helminths as it shares similarity with regard to cell wall structure and biochemistry. Moreover, it is widely studied and the methodologies are well established. Results: Out of the 11 compounds and extracts screened, 8 were found to be prospective. They were also found to be effective against Candida albicans and Caenorhabditis elegans. Conclusion: Purified Methyl Ethyl Ketone (MEK) Fraction1 (F1) of Coconut (Cocos nucifera) Shell Extract (COSE) was found to be more effective against Candida albicans with an IC50 value of 3.04 μg/mL and on L4 stage of Caenorhabditis elegans with an IC50 of 77.8 μg/mL.
Bacteriophages are generally specific, and a cocktail of phages is needed to combat different bacterial targets. Their production usually requires pathogenic isolation hosts. We identified a novel strain, Escherichia coli ST155, that could serve as a production host for three different polyvalent phages (ϕPh_SE03, ϕPh_SD01, and ϕPh_EC01), thus superseding the use of individual isolation hosts. Upon propagation in E. coli ST155, the phages demonstrated differential intergeneric infectivity against Salmonella enterica, E. coli OP50, Shigella dysenteriae, E. coli MDR, and Acinetobacter baumannii. Phages were characterised based on morphology, latent period, burst size, the efficiency of plating, and restriction enzyme profile. Survival assay on Caenorhabditis elegans, the absence of Shiga toxin, and enterotoxigenic E. coli virulence genes indicated that E. coli ST155 could be non-pathogenic. Lack of antibiotic resistance and absence of functional prophages rendered the host suitable for environmental applications. As a proof-of-concept, phage ϕPh_SE03 was produced in ST155 by employing a unique Bacteriophage Amplification Reactor-Lytics Broadcasting System and was simultaneously disseminated into S. enterica augmented wastewater, which resulted in a 3-log reduction in 24 h. The study establishes the potential of E. coli ST155 as a phage production host thereby minimising the possibility of accidental release of pathogenic hosts into wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.