The development of consumer hydroacoustic systems continues to advance, enabling the use of low-cost methods for professional mapping purposes. Information describing habitat characteristics produced with a combination of low-cost commercial echosounder (Lowrance HDS) and a cloud-based automated data processing tool (BioBase EcoSound) was tested. The combination frequently underestimated water depth, with a mean absolute error of 0.17 ± 0.13 m (avg ± 1SD). The average EcoSound bottom hardness value was high (0.37–0.5) for all the substrate types found in the study area and could not be used to differentiate between the substrate size classes that varied from silt to bedrock. Overall, the bottom hardness value is not informative in an alluvial river bed setting where the majority of the substrate is composed of hard sands, gravels, and stones. EcoSound separated vegetation presence/absence with 85–100% accuracy and assigned vegetation height (EcoSound biovolume) correctly in 55% of instances but often overestimated it in other instances. It was most accurate when the vegetation canopy was ≤25% or >75% of the water column. Overall, as a low-cost, easy-to-use application EcoSound offers rapid data collection and allows users with no specialized skill requirements to make more detailed bathymetry and vegetation maps than those typically available for many rivers, lakes, and estuaries.
Natural hydrological fluctuations within river floodplains generate habitat diversity through variable connections between habitat patches and the main river channel. Human modification of floodplains can alter the magnitude and frequency of large floods and associated sediment movement by interrupting these floodplain connections. The lower Wolastoq | Saint John River and its associated floodplain wetlands are experiencing anthropogenic disturbances arising from climate change, increased urbanization in the watershed, changing upstream agricultural landscape practices, and, most notably, major road and dam construction. By comparing digitized aerial images, we identified key periods of change in wetland extent throughout an ecologically significant component of the floodplain, the Grand Lake Meadows and Portobello Creek wetland complex, with significant erosion evident in coves and backwater areas across the landscape following dam construction and significant accretion around the Jemseg River following highway construction. Connectivity and hydrological regime also influenced other habitat components, namely nutrients and metals retention, as well as the composition of the local macrophyte community. These findings address two key aspects of floodplain management: (1) understanding how hydrological alteration has historically influenced floodplain wetlands can inform us of how the ecosystem may respond under future conditions, such as climate change, and (2) the mechanisms by which habitat diversity and disturbance regimes filter biological communities, with the potential for patches to host a rich biodiversity continuously supporting critical ecosystem functions.
Toxic benthic cyanobacterial mats are increasingly reported worldwide as being responsible for animal mortalities due to their production of the potent neurotoxin anatoxin-a (ATX) and its analogues. Improved analytical methods for anatoxins are needed to address public health and watershed management challenges arising from extremely high spatial and temporal variability within impacted systems. We present the development, validation, and application of a direct analysis in real-time–high-resolution tandem mass spectrometry (DART–HRMS/MS) method for analysis of anatoxins in cyanobacterial field samples, including a simplified sample preparation approach. The method showed excellent sensitivity and selectivity for ATX, homoanatoxin-a, and dihydroanatoxin-a. Isotopically labeled ATX was used as an internal standard for all three analogues and successfully corrected for the matrix effects observed (86 ± 16% suppression). The limit of detection and recovery for ATX was estimated as 5 ng/g and 88%, respectively, using spiked samples. The total analysis time was ∼2 min, and excellent agreement was observed with results from a liquid chromatography–HRMS reference method. Finally, the DART–HRMS/MS method was applied to a set of 45 Microcoleus -dominated benthic cyanobacterial mat samples from the Wolastoq near Fredericton, Canada, demonstrating its power and applicability in enabling broad-scale field studies of ATX distribution.
Eurasian Water-milfoil (Myriophyllum spicatum L.) is regarded by conservation practitioners as one of the most challenging invasive aquatic plants to manage. Owing to its broad tolerance to environmental conditions, vegetative propagation, and rapid establishment and growth, M. spicatum introductions have the potential to drastically alter macrophyte species assemblages via a loss of native species and their respective ecosystem functions. Following the discovery of a single specimen of M. spicatum in the Saint John River, near Fredericton, New Brunswick (Canada) we further investigated the localized distribution of this nonindigenous species. Thirteen areas were identified as potential M. spicatum habitat and were surveyed by wading or snorkeling. Specimens of M. spicatum were collected and morphological identifications were verified through genetic analyses (ITS2; rbcLa). The results of our investigation confirm the presence of M. spicatum at six different locations within the Saint John River. Here we discuss the implications of this discovery in the context of the contiguous aquatic habitats along a large river system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.