An on-going challenge with Gasoline direct injection (GDI) engines is achieving rapid activation of the exhaust catalyst during cold starts, in order to reduce the Nitrogen Oxide (NOx) emissions. Injecting late in the compression stroke, in the efforts to form a stratified mixture, provides the fuel insufficient time to be entrained with the surrounding charge. This results in locally fuel rich diffusion combustion and the formation of high levels of particulate matter. Employing a split injection strategy can help tackle these issues. The current study examines the effects of a split injection strategy on the spray characteristics. Varying pulse width (PW) combinations, split ratios and dwell times are investigated using a Solenoid actuated high pressure injector. The injected quantity and the droplet characteristics of a target plume are investigated. The experiments were performed in a constant volume spray chamber. The droplet velocities and sizes were measured using Phase Doppler Particle Anemometry (PDA). Short and large PWs, in the range of 0.3–0.8 ms, were investigated. The results revealed that the highest injected quantity of fuel was measured with the shortest dwell time of 2 ms, owing to increased interactions between the injection events, which led to larger Sauter mean diameters (SMDs) measured. The SMDs for the shorter PW of 0.4 ms were generally larger than 0.8 ms PW. The droplets in this case were affected by the closely spaced opening and closing events of the Solenoid valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.