In this article, a new approach is presented to study the free vibrations of rectangular composite plates coupled with single piezoelectric layer. The laminated plate with general stacking sequences is subjected to the elastic edge restraints. Based on the first-order shear deformation theory and Hamilton’s principle, the equations of the motion along with boundary conditions of the problem are deduced. To solve the problem, generalized displacements as well as general electric potentials are expanded using the Legendre polynomial series as the base functions. Then, the kinetic and potential energies of the problem are obtained. Afterwards, by means of Lagrange multipliers all the boundary conditions have been added to the energies to form the functional. This energy functional is extremised to get the natural frequencies and mode shapes of the problem through generalized eigenvalue problem. Credibility of the proposed method is verified by comparing the obtained results with those achieved by other theories and finite element method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.