Stromal cell-derived factor-1α (SDF-1α) has been known to implicate in homing of MSCs, and resveratrol has been reported to have a positive influence on SDF-1 level in the site of injury. In this study, a combined strategy was applied to evaluate bone marrow-derived MSCs (BMSCs) homing to the rat model of liver cirrhosis induced by common bile duct ligation (CBDL): (1) pretreatment delivery of resveratrol into the cirrhotic liver, and (2) transplantation of ex vivo BMSC preconditioning with SDF-1α. BMSCs were preconditioned with 10 ng/µL SDF-1α for 1 h and then labeled with the CM-Dil. Cirrhosis was induced by CBDL. Animals received intraperitoneal injection of resveratrol for 7 days, started on day 28 of CBDL post-operative. On day 36 post-operative, 1 × 10 of SDF-1α-preconditioned BMSCs was injected via caudal vein. Animals were sacrificed at 72 h post-cell transplantation. Immunofluorescence and flow cytometry assessments showed that the BMSC+SDF+RV group had an increased rate of homing into the liver, but it had a decreased rate of homing into the lung and spleen, as compared with the other groups (P < 0.05). The BMSC+SDF+RV group showed high protein expression of SIRT1, but low protein expression of p53 in the liver (P < 0.05 vs other groups). CXCR4 and matrix metalloproteinase (MMP)-9 highly expressed in SDF-1α-preconditioned BMSCs in vitro, and that AKTs and CXCL12 expressed in injured liver undergoing resveratrol injection. Our findings suggest that reseveratrol pretreatment prior to SDF-1α preconditioning could be a promising strategy for designing cell-based therapies for liver cirrhosis.
Neurodegenerative diseases are devastating and incurable disorders characterized by neuronal dysfunction. The major focus of experimental and clinical studies are conducted on the effects of natural products and their active components on neurodegenerative diseases. This review will discuss an herbal constituent known as cinnamaldehyde (CA) with the neuroprotective potential to treat neurodegenerative disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Accumulating evidence supports the notion that CA displays neuroprotective effects in AD and PD animal models by modulating neuroinflammation, suppressing oxidative stress, and improving the synaptic connection. CA exerts these effects through its action on multiple signaling pathways, including TLR4/NF-κB, NLRP3, ERK1/2-MEK, NO, and Nrf2 pathways. To summarize, CA and its derivatives have been shown to improve pathological changes in AD and PD animal models, which may provide a new therapeutic option for neurodegenerative interventions. To this end, further experimental and clinical studies are required to prove the neuroprotective effects of CA and its derivatives.
Traumatic brain injury (TBI) is a leading cause of mortality and long-lasting disability globally. Although novel treatment options have been investigated, no effective therapeutic opportunities for TBI exist. Accumulating studies demonstrated that the paracrine mechanisms of stem cells may allow them to orchestrate regenerative processes after TBI. So far, very little attention has been paid to the beneficial effects of human neural stem cells (hNSCs) in comparison to their exosomes as a paracrine mechanism. This study is aimed at comparing the effect of hNSCs with their exosomes in a TBI model. For in vitro assessments, we cultured hNSCs using the neurosphere method and isolated hNSC-derived exosomes from culture supernatants. For in vivo experiments, male rats were divided into three groups ( n = 8 /group): TBI group: rats were subjected to a unilateral mild cortical impact; hNSC group: rats received a single intralesional injection of 2 × 10 6 hNSCs after TBI; and exosome group: rats received a single intralesional injection of 63 μg protein of hNSC-derived exosomes after TBI. Neurological assessments, neuroinflammation, and neurogenesis were performed at the predetermined time points after TBI. Our results indicated that the administration of exosomes improved the neurobehavioral performance measured by the modified neurological severity score (mNSS) on day 28 after TBI. Furthermore, exosomes inhibited the expression of reactive astrocytes as a key regulator of neuroinflammation marked by GFAP at the protein level, while enhancing the expression of Doublecortin (DCX) as a neurogenesis marker at the mRNA level. On the other hand, we observed that the expression of stemness markers (SOX2 and Nestin) was elevated in the hNSC group compared to the exosome and TBI groups. To sum up, our results demonstrated that the superior effects of exosomes versus parent hNSCs could be mediated by improving mNSS score and increasing DCX in TBI. Considerably, more work will need to be done to determine the beneficial effects of exosomes versus parent cells in the context of TBI.
Among different types of mechanisms involved in neurological disorders, neuroinflammation links initial insults to secondary injuries and triggers some chronic outcomes, for example, neurodegenerative disorders. Thus, anti-inflammatory substances can be targeted as a novel therapeutic option for translational and clinical research to improve brain disease outcomes. In this review, we propose to introduce a new insight into the anti-inflammatory effects of mesenchymal stem cells (MSCs) as the most frequent source for stem cell therapy in neurological diseases. Our insight incorporates a bystander effect of these stem cells in modulating inflammation and microglia/macrophage polarization through exosomes. Exosomes are nano-sized membrane vesicles that carry cell-specific constituents, including protein, lipid, DNA, and RNA. microRNAs (miRNAs) have recently been detected in exosomes that can be taken up by other cells and affect the behavior of recipient cells. In this article, we outline and highlight the potential use of exosomal miR-NAs derived from MSCs for inflammatory pathways in the context of neurological disorders. Furthermore, we suggest that focusing on exosomal miRNAs derived from MSCs in the course of neuroinflammatory pathways in the future could reveal their functions for diverse neurological diseases, including brain injuries and neurodegenerative diseases. It is hoped that this study will contribute to a deep understanding of stem cell bystander effects through exosomal miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.