After pneumonectomy and injurious ventilation of the left lung, TDD and STD displayed changes in extravascular lung water with acceptable accuracy when compared with postmortem gravimetry. Ventilator-induced lung injury seems to be a crucial mechanism of pulmonary edema after pneumonectomy.
Background: MyD88 directly interacts and affects IRF activation in mammals, but no information has been available about lower vertebrates. Results: Transgenic MyD88 interacts with IRF3 and IRF7A/B and modulates the IRF-induced IFN response and accumulates in aggresomes in Atlantic salmon. Conclusion: MyD88 is involved in the regulation of the IRF-induced IFN response in Atlantic salmon. Significance: The results shed light on the evolution of the innate immune response in vertebrates.
A previous study showed that a plasmid expressing IFNa (pIFNa) strongly enhanced protection and antibody production of a DNA vaccine against infectious salmon anemia virus (ISAV) in Atlantic salmon. The vaccine consisted of a plasmid (pHE) expressing the virus hemagglutinin-esterase as an antigen. To increase the understanding of the adjuvant effect of pIFNa, we here compared transcriptome responses in salmon muscle at the injection site at week 1 and 2 after injection of pIFNa, pHE, plasmid control (pcDNA3.3) and PBS, respectively. The results showed that the IFNa plasmid mediates an increase in gene transcripts of at least three major types in the muscle; typical IFN-I induced genes (ISGs), certain chemokines and markers of B- cells, T-cells and antigen-presenting cells. The latter suggests recruitment of cells to the plasmid injection site. Attraction of lymphocytes was likely caused by the induction of chemokines homologous to mammalian CCL5, CCL8, CCL19 and CXCL10. IFN may possibly also co-stimulate activation of lymphocytes as suggested by studies in mammals. A major finding was that both pcDNA3.3 and pHE caused responses similar to pIFNa, but at lower magnitude. Plasmid DNA may thus by itself have adjuvant activity as observed in mammalian models. Notably, pHE had a lower effect on many immune genes including ISGs and chemokines than pcDNA3.3, which suggests an inhibitory effect of HE expression on the immune genes. This hypothesis was supported by an Mx-reporter assay. The present study thus suggests that a main role for pIFNa as adjuvant in the DNA vaccine against ISAV may be to overcome the inhibitory effect of HE- expression on plasmid-induced ISGs and chemokines.
Salmonid alphavirus (SAV) is the causative agent of pancreas disease (PD) in farmed Atlantic salmon. A previous study showed that vaccination of pre-smolt salmon with a plasmid encoding the structural polypeptide of SAV gave protection against infection and development of PD accompanied by production of antibodies against the virus. In the present work we analyzed transcript responses in the muscle to vaccination with this plasmid (here named pSAV). The purpose was to shed light on how pSAV might initiate adaptive immune responses in the fish. The work was based on microarray and reverse transcription quantitative PCR analyses of muscle at the injection site 7 days after vaccination. The results showed that pSAV and pcDNA3.3 had similar abilities to up-regulate type I IFN stimulated genes. In contrast, pSAV caused higher up-regulation of IFNγ and several IFNγ inducible genes. Compared to pcDNA3.3, pSAV also gave larger increase in transcripts of marker genes for B-cells, T-cells and antigen presenting cells (APCs), which suggest attraction and role of these cells in the adaptive immune responses elicited by pSAV. Moreover, pSAV caused a stronger up-regulation of the chemokine CXCL10 and the proinflammatory cytokines IL-1ß and TNFα, which may explain attraction of lymphocytes and APCs. The present work shows that the expression profile of genes resulting from vaccination with pSAV is different from the expression profiles obtained previously by vaccination of salmonids with DNA vaccines against infectious salmon anemia virus and infectious hematopoietic necrosis virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.