Acute respiratory tract infections (ARTIs) are one of the most common causes of morbidity and mortality in young children worldwide. Influenza virus and respiratory syncytial virus (RSV) are the predominant aetiological agents during seasonal epidemics, and thus rapid and sensitive molecular tests for screening for such agents and timely identification of epidemics are required. This study compared real-time quantitative PCR (qPCR) with conventional RT-PCR for parallel identification of influenza A virus (IAV) or influenza B virus (IBV) and RSV. A total of 1091 respiratory samples was examined from children with suspected ARTIs between January 2007 and December 2008. Of these, 275 (25.21 %) were positive for either influenza or RSV by qPCR compared with 262 (24 .01%) positive by RT-PCR. Overall, IAV, IBV and RSV were detected in 121 (11.09 %), 59 (5.41 %) and 95 (8.71 %) samples, respectively. In spite of overlapping clinical symptoms, RSV and influenza virus showed distinct seasonal peaks. IAV correlated positively and RSV negatively with rainfall and temperature. No distinct seasonality was observed in IBV infections. This is, to the best of our knowledge, the first report of a systemic surveillance of respiratory viruses with seasonal correlation and prevalence rates from eastern India. This 2 year comparative analysis also confirmed the feasibility of using qPCR in developing countries, which will not only improve the scope for prevention of epidemics, but will also provide crucial epidemiological data from tropical regions.
Please cite this paper as: Koul PA., et al. (2011) Pandemic and seasonal influenza viruses among patients with acute respiratory illness in Kashmir (India). Influenza and Other Respiratory Viruses 5(6), e521–e527.
Background With the emergence of pandemic influenza A (2009A/H1N1) virus in India, we sought to determine the prevalence and clinical presentations of seasonal and pandemic influenza viruses among acute respiratory illness (ARI) patients from Srinagar, a temperate climate area in northern India, during the peak winter season.
Methods Combined throat and nasal swabs, obtained from 194 (108 male) presenting with ARI from January to March 2010 (Week 53‐week 10), were tested by RT‐PCR for influenza A and B, including 2009A/H1N1 viruses. HA1 gene of selected 2009A/H1N1‐positive samples was sequenced, and phylogenetic analysis was carried out.
Results Twenty‐one (10·8%, age 15–80 years, median age 40 years) patients tested positive for influenza viruses: 13 (62%) for 2009A/H1N1 virus, 6 (28·5%) for seasonal influenza A (H3N2), and 2 (9·5%) for influenza B. Twelve of the 13 patients with 2009A/H1N1 presented with febrile ARI, and eight had associated comorbidities. All of the patients recovered. Phylogenetic analysis of HA gene (n = 8) revealed that all strains from Srinagar clustered in 2009A/H1N1 clade seven along with the other 2009A/H1N1 strains from India. Amino acid substitutions in the HA protein defining clade seven (P83S, S203T, and I321V) were found in almost all isolates from Srinagar.
Conclusions Both seasonal and 2009A/H1N1 viruses appear to be associated with ARI in Srinagar. The 2009A/H1N1 in Srinagar is genetically similar to globally circulating clade 7 strains, with unique signature sequences in the HA gene. Further investigations into ascertain the role of these mutations in possible alteration of the virulence and transmissibility of the virus are needed.
During the peak outbreak (July-September 2009), a total 1886 patients were screened in eastern India, of which 139 (7.37%) and 52 (2.76%) were positive for pH1N1 and seasonal H1N1, respectively. Full-length HA1, NA, NS1 and PB1-F2 genes of representative strains were sequenced. Phylogenetic analysis of deduced amino acid sequences of pH1N1 strains revealed HA1 and NS1 to be of North American swine lineage, and the NA gene of Eurasian swine lineage. Consistent with previous reports, the PB1-F2 gene of pH1N1 strains was unique due to a mutation resulting in a truncated protein of 11 aa. The HA, NA and NS1 genes of H1N1/2009 strains clustered with H1N1 strains of 2000-2009, whereas a subset of strains contained a pH1N1-like truncated PB1-F2. The truncated PB1-F2 may confer the advantage of lower pathogenicity but higher replication and infectivity to the human H1N1 strains. This is the first report of seasonal H1N1/2009 strains with a pH1N1/2009-like gene segment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.