Significant progress has been achieved for the development of novel anti-viral drugs in the recent years. Large numbers of these newly developed drugs belong to three groups of compounds, nucleoside analogues, thymidine kinase-dependent nucleotide analogues and specific viral enzyme inhibitors. It has been found that the natural products, like plant extract, plant-derived compounds (phytochemicals) and so on, as well as traditional medicines, like Ayurvedic, traditional Chinese medicine (TCM), Chakma medicines and so on, are the potential sources for potential and novel anti-viral drugs based on different in vitro and in vivo approaches. In this chapter some of these important approaches utilised in the drug discovery process of potential candidate(s) for anti-viral agents are being discussed. The key conclusion is that natural products are one of the most important sources of novel anti-viral agents.
There is no significant variation in the sequences of hexon and fiber genes among strains from symptomatic and asymptomatic children. Our data confirm the circulation of an AdV-41 strain with a novel pattern in Kolkata, India, among children below 5 years of age.
Chinese hamster lung fibroblasts V79 cells were treated with heat stress for 4 weeks with short duration (15 min) heat shock every alternate day in culture. It was observed that Hsp 70 and the antioxidant enzyme MnSOD became overexpressed during the chronic heat stress period.
During the peak outbreak (July-September 2009), a total 1886 patients were screened in eastern India, of which 139 (7.37%) and 52 (2.76%) were positive for pH1N1 and seasonal H1N1, respectively. Full-length HA1, NA, NS1 and PB1-F2 genes of representative strains were sequenced. Phylogenetic analysis of deduced amino acid sequences of pH1N1 strains revealed HA1 and NS1 to be of North American swine lineage, and the NA gene of Eurasian swine lineage. Consistent with previous reports, the PB1-F2 gene of pH1N1 strains was unique due to a mutation resulting in a truncated protein of 11 aa. The HA, NA and NS1 genes of H1N1/2009 strains clustered with H1N1 strains of 2000-2009, whereas a subset of strains contained a pH1N1-like truncated PB1-F2. The truncated PB1-F2 may confer the advantage of lower pathogenicity but higher replication and infectivity to the human H1N1 strains. This is the first report of seasonal H1N1/2009 strains with a pH1N1/2009-like gene segment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.