Objective: Gamma Knife® (GK) (Elekta Instruments, Stockholm, Sweden) radiosurgery is well established for treatment of brain metastases. There are limited data on patients treated with GK from gynecological cancers. The authors sought to determine the effectiveness of the GK in patients with brain metastases from gynecological cancers.Methods: An IRB-approved database was queried for patients with gynecologic cancers treated with GK between June 1996 and May 2016. Imaging studies were reviewed post-SRS (stereotactic radiosurgery) to evaluate local control (LC) and distant brain control (DC). Overall survival (OS), local control, and distant brain control were calculated using the Kaplan-Meier (KM) method and log-rank test. Results: Thirty-three patients underwent SRS for 73 separate cranial lesions. The median age was 58.5 years, and 17 (52%) also had extracranial metastases. Ten (30%) patients had previously received whole brain radiotherapy (WBRT), and 11 (33%) underwent concurrent WBRT. The median tumor volume was 0.96 cm3. Median radiographic follow-up was 11 months. At the time of treatment, 39% of patients were categorized as recursive partitioning analysis (RPA) Class I, 55% as RPA Class II, and 6% as RPA Class III. The local failure rate was 8%. Five patients (15%) developed new brain lesions outside the radiation field with a median progression-free survival (PFS) of seven (range: 3-9) months. Median OS was 15 months from GK treatment. One-year OS was 72.9% from GK treatment. Primary cancer histology was a significant predictor of OS, favoring ovarian and endometrial cancer (p = 0.03).Conclusions: Gamma Knife stereotactic radiosurgery for gynecologic brain metastases leads to excellent control rates of treated lesions. Primary histology may have a significant impact on OS following GK, with improved survival seen with ovarian and cervical cancer following Gamma Knife radiosurgery (p = 0.03).
Vibration loading has become very important in the reliability assessment of modern electronic systems. The objective of this paper is to develop a rapid assessment methodology that can determine the solder joint fatigue life of ball grid array (BGA) and chip scale packages (CSP) under vibration loading. The current challenge is how to execute the vibration fatigue life analysis rapidly and accurately. The approach in this paper will involve global (entire printed wiring board (PWB)) and local (particular component of interest) modeling approaches. In the global model approach, the vibration response of the PWB will be determined. This global model will give us the response of the PWB at specific component locations of interest. This response is then fed into a local stress analysis for accurate assessment of the critical stresses in the solder joints of interest. The stresses are then fed into a fatigue damage model to predict the life. The goal is to retain as much accuracy and physical insight as possible while retaining computation efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.