The compatibility of the properties of elastomer with conventional diesel fuel has made it favourable in many engineering applications. However, due to global energy insecurity issues, there is an urgent need to find alternative renewable sources of energy as replacements to conventional diesel. In this respect, biodiesel appears to be a promising candidate. Hence, research into the compatibility and fatigue characteristics of elastomers exposed to biodiesel becomes essential. The present paper introduces the first attempt to investigate the effect of different solvents on the fatigue of swollen elastomers. The filled nitrile rubbers are immersed in the palm biodiesel and conventional diesel to obtain the same degree of swelling prior to the application of uniaxial fatigue loading. Field Emission Scanning Electron Microscopy (FESEM) analysis is carried out to observe the fracture surfaces. Stretch-N curves are plotted to illustrate the fatigue life duration. These curves showed that the fatigue lifetime of rubber is the longest for dry rubber and the least for rubber swollen in biodiesel. FESEM micrographs reveal that the loading conditions have no effect on the crack initiation and propagation patterns regardless of the swelling state.
International audienceIn the present paper, experimental investigation and continuum mechanical modeling of Mullins effect in swollen elastomers, due to exposure to palm biodiesel, under cyclic loading conditions are addressed. To this end, the nature of Mullins effect in both dry and swollen elastomers is explored and compared. It is found that swelling reduces Mullins effect. Based on experimental observations, in order to account for swelling in the modeling of Mullins effect, two constitutive equations widely used in literature are considered and phenomenologically extended: Continuum Damage Mechanics model and Pseudo-Elastic model. The efficiency of the two extended models are assessed and perspectives for further development are drawn
Coulon. Effect of swelling on fatigue life of elastomers. Polymer Degradation and Stability, Elsevier, 2016Elsevier, , 124, pp.15-25. 10.1016Elsevier, /j.polymdegradstab.2015 M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT AbstractIn a number of engineering applications, elastomeric components are exposed to aggressive solvent such as biodiesel. Since biodiesel is considered as a potential substitute for conventional fossil fuel, the study on the durability in service of elastomers exposed to biodiesel becomes essential. The present paper investigates the mechanical response of swollen elastomers, due to exposure to palm biodiesel, under fatigue loading conditions. To this end, fatigue tests are conducted on dry and swollen rubber specimens at various maximum strains and a zero strain ratio. The physical fatigue damage mechanism induced in swollen material is studied through FESEM analysis coupled with EDS. During the test,two definitions of specimen end-of-life are adopted: (i) the number of cycles required for a nucleated crack to reach 1 mm in length and (ii) the number of cycles required for a complete rupture to occur in the specimens. The fatigue lifetime curves are plotted where the maximum principal stretch is used as the predictor. It is shown that swollen rubbers have shorter lifetime compared to the dry ones. Moreover, FESEM results reveal that the swelling level has no effect on the morphology of crack nucleation and propagation, regardless of the imposed loading level.
Palm biodiesel is deemed a promising future fuel substitute for conventional diesel fuel. In line with this perspective, necessary changes in the existing diesel engine system are expected in order to address the issue of material compatibility. One typical degradation observed in rubber components exposed to aggressive solvent such as palm biodiesel during the service is swelling. Thus, the investigation of the effect of swelling on the mechanical response under cyclic loading is prerequisite for durability analysis of such components. In this study, filled and unfilled swollen nitrile rubbers are immersed in conventional diesel and palm biodiesel baths until a 5% swelling level is achieved. Both dry and swollen rubbers are subjected to uniaxial cyclic loading tests. The analysis of the mechanical responses has shown that swelling decreases inelastic effects such as hysteresis, stress softening, and permanent set. For both dry and swollen rubbers, fillers are found to have significant effects in the inelastic responses, whereas the effects of solvent and loading rate are comparable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.