It has been suggested previously that phagocytic activity in the human placenta is confined to cells of the macrophage lineage. However, earlier studies were hampered by the paucity and poor viability of cells inherent in primary trophoblast cell cultures, contamination by other cell types which themselves have phagocytic activity, lack of reliable markers of trophoblasts, and by limitations of methods available to demonstrate unequivocally the internalization of particulate material. We have overcome these limitations by using: (i) DNA transfection to provide unlimited supplies of pure trophoblast cell lines; (ii) human placental lactogen as a marker unique to trophoblast; and (iii) confocal microscopy to demonstrate unequivocally the intracellular locality of phagocytosed material. We found that both untransfected primary culture extravillous trophoblast cells, as well as the cell lines, had the capacity to phagocytose sheep red blood cells, Staphylococcus aureus and baker's yeast cells, and that this activity was inhibited by cytochalasin B and by culture at 4 degrees C. Phagocytic activity in trophoblast cells was less avid than that seen in a professional phagocyte. In physiological and pathological situations where tissue remodelling occurs, such as the rapid turnover in the periodontal ligament or during inflammation, epithelial cells and other cells that are not considered professional phagocytes actively phagocytose components of the extracellular matrix. We postulate that phagocytosis by human trophoblasts may play an important role in the extensive tissue remodelling that occurs during trophoblastic invasion of the decidua.
Polymer microcapsules are of particular interest for applications including self‐healing coatings, catalysis, bioreactions, sensing, and drug delivery. The primary way that polymer capsules can exhibit functionality relevant to these diverse fields is through the incorporation of functional cargo in the capsule cavity or wall. Diverse functional and therapeutic cargo can be loaded into polymer capsules with ease using polymer‐stabilized calcium carbonate (CaCO3) particles. A variety of examples are demonstrated, including 15 types of cargo, yielding a toolbox with effectively 500+ variations. This process uses no harsh reagents and can take less than 30 min to prepare, load, coat, and form the hollow capsules. For these reasons, it is expected that the technique will play a crucial role across scientific studies in numerous fields.
Phenotypic and biologic characteristics of TEV-1 were shown as the properties of extravillous trophoblasts; thus, the TEV-1 cell line may be used as a cell model in extravillous trophoblast studies.
Objective To compare plasma catecholamine (noradrenaline and adrenaline) levels in pre-eclamptic to normotensive pregnancy, and to study the activity of synthetic enzymes for catecholamines in placental and trophoblastic cell cultures. We postulated that catecholamines might be an important signal secreted by the fetoplacental unit in pre-eclampsia. MethodsWe recruited 12 women with pre-eclampsia and 12 pregnant women with nonproteinuric hypertension undergoing delivery by caesarean section, 23 normotensive women undergoing elective caesarean section at term, and 26 normotensive primigravid women with ongoing pregnancies at gestations equivalent to those women with pre-eclampsia. We measured venous blood concentrations of catecholamines. Following delivery, we studied tyrosine hydroxylase (the rate limiting enzyme for catecholamine synthesis) activity in placental tissue of these women as well as from four eclamptic women not in the observer study. We used Northern blot analysis to quantify mRNA for tyrosine hydroxylase and dopamine-P-hydroxylase (D-P-H, a non-rate-limiting synthetic enzyme for catecholamine) in placental tissue, as well as in trophoblast cells in primary culture and trophoblast cell lines.Results Venous blood concentrations of noradrenaline were significantly higher in pre-eclamptic women compared with normotensive women. Tyrosine hydroxylase activity was greater in placental tissue from pre-eclamptic and eclamptic compared with normotensive pregnancies, as were mRNA levels for this enzyme. The mRNA levels for the non-rate-limiting D-P-H in women with pre-eclampsia were similar to those in normotensive pregnancies. First trimester trophoblast cells in primary culture and trophoblast cell lines transcript mRNA for tyrosine hydroxylase and D-P-H. ConclusionsTrophoblasts have the capacity to secrete catecholamines, and we found increased activity of the rate-limiting synthetic enzyme in placental tissue from pre-eclamptic pregnancies. We postulate that the higher levels of catecholamines we found in the plasma of women with pre-eclampsia might be of placental origin. We hypothesise that in pre-eclampsia ischaemic trophoblast tissue secretes catecholamines as a physiological signal to increase maternal blood flow to the fetoplacental unit, which itself is spared the vasoconstrictor effects of catecholamines (placental vessels are known to be unresponsive to catecholamines). However, since the basic pathology-defective trophoblast invasion-is not corrected, the increased blood flow fails to resolve the ischaemia, and the secretion of catecholamines is therefore sustained or even enhanced. Noradrenaline is known to cause lipolysis. This results in breakdown of triglycerides to free fatty acids, which are oxidized to lipid peroxides. The latter are cytotoxic and cause widespread endothelial cell damage and dysfunction, culminating in the clinical syndrome of pre-eclampsia.
Targeted polymer capsules can selectively bind to unstable plaques in mice after intravenous injection. Different formulations of the capsules are explored with a synthetic/biopolymer hybrid capsule showing the best stability and small-molecule drug retention. The synthetic polymer is composed of pH-sensitive blocks (PDPA), low-binding blocks (PEG), and click-groups for postfunctionalization with targeting peptides specific to plaques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.