Neonatal diarrhea in dairy calves causes huge economic and productivity losses in the dairy industry. Zinc is an effective anti-diarrheal agent, but high doses may pose a threat to the environment. Therefore, we aimed to evaluate the effects of low-dose zinc supplementation on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn Holstein dairy calves. Thirty newborn calves were allocated to either a control group (without extra zinc supplementation), or groups supplemented with either 104 mg of zinc oxide (ZnO, equivalent to 80 mg of zinc/d) or 457 mg of zinc methionine (Zn-Met, equivalent to 80 mg of zinc/d) and studied them for 14 d. The rectal contents were sampled on d 1, 3, 7, and 14, and blood samples were collected at the end of the study. Supplementation with ZnO reduced the incidence of diarrhea during the first 3 d of life, and increased serum IgG and IgM concentrations. The Zn-Met supplementation increased growth performance and reduced the incidence of diarrhea during the first 14 d after birth. The results of fecal microbiota analysis showed that Firmicutes and Proteobacteria were the predominant phyla, and Escherichia and Bacteroides were the dominant genera in the recta of the calves. As the calves grew older, rectal microbial diversity and composition significantly evolved. In addition, dietary supplementation with ZnO reduced the relative abundance of Proteobacteria in 1-d-old calves, and increased that of Bacteroidetes, Lactobacillus, and Faecalibacterium in 7-d-old calves, compared with the control group. Supplementation with Zn-Met increased the relative abundance of the phylum Actinobacteria and the genera Faecalibacterium and Collinsella on d 7, and that of the genus Ruminococcus after 2 wk, compared with the control group. Thus, the rectal microbial composition was not affected by zinc supplementation but significantly evolved during the calves' early life.Zinc supplementation reduced the incidence of diarrhea in young calves. In view of their differing effects, we recommend ZnO supplementation for dairy calves during their first 3 d of life and Zn-Met supplementation for the subsequent period. These findings suggest that zinc supplementation may be an alternative to antibacterial agents for the treatment of newborn calf diarrhea.
Soybean-induced anaphylaxis poses a severe threat to the health of humans and animals. Some commensal bacteria, such as Lactobacillus and Bifidobacteria, can prevent and treat allergic diseases. Prebiotic oligosaccharides, a food/diet additive, can enhance health and performance via modulating gut microbes and immune responses. The purpose of this study was to examine whether fructo-oligosaccharides (FOS) could alleviate soybean-induced anaphylaxis by modulating gut microbes. Piglets (21 days of age) were sensitized with a diet containing 5% soybean and 30% peeled soybean meal. The treatment with 0.6% FOS started 1 day prior to sensitization and continued everyday thereafter. Blood was collected for measurements of immune indices. The DNA samples isolated from fresh intestinal contents of the middle jejunum (M-jejunum), posterior jejunum (P-jejunum), ileum, and cecum were used for gene sequencing based on 16S rRNA. Our results showed that there was an increase of glycinin-specific IgG, β-conglycinin-specific IgG, total serum IgG and IgE, and occurrence of diarrhea in piglets sensitized with soybean antigen. There was a decrease in interleukin 4 (IL-4) and IL-10 and an increase of interferon-γ (IFN-γ) in piglets with FOS treatment, compared with the piglets without FOS treatment. Improvement of intestinal microbes was indicated mostly by the increase of Lactobacillus and Bifidobacteria in M-jejunum and the decrease of Proteobacteria in P-jejunum and ileum. The correlation analysis indicated that FOS treatment decreased those closely related to the key species of gut microbes. These results suggest that FOS can alleviate soybean antigen-induced anaphylaxis, which is associated with increased Lactobacillus and Bifidobacteria in M-jejunum and declined Proteobacteria in P-jejunum and ileum of piglets.
Early weaning stress impairs the development of gastrointestinal barrier function, causing immune system dysfunctions, reduction in feed intake, and growth retardation. Autophagy was hypothesized to be a key underlying cellular process in these dysfunctions. We conjectured that rapamycin (RAPA) and chloroquine (CQ), as two autophagy-modifying agents, regulate the autophagy process and may produce deleterious or beneficial effects on intestinal health and growth. To explore the effect of autophagy on early weaning stress in piglets, 18 early-weaned piglets were assigned to three treatments (each treatment of six piglets) and treated with an equal volume of RAPA, CQ, or saline. The degree of autophagy and serum concentrations of immunoglobulins and cytokines, as well as intestinal morphology and tight junction protein expression, were evaluated. Compared with the control treatment, RAPA-treated piglets exhibited activated autophagy and had decreased final body weight (BW) and average daily gain (ADG) (p < 0.05), impaired intestinal morphology and tight junction function, and higher inflammatory responses. The CQ-treated piglets showed higher final BW, ADG, jejuna and ileal villus height, and lower autophagy and inflammation, compared with control piglets (p < 0.05). Throughout the experiment, CQ treatment was beneficial to alleviate early weaning stress and intestinal and immune system dysfunction.
Here, we examined the effects of Lonicera japonica extract (LJE) on lactation performance, antioxidant status, and endocrine and immune function in heatstressed mid-lactation dairy cows. Twenty-four healthy Chinese Holstein mid-lactation dairy cows, all with similar milk yield (30.0 ± 1.0 kg/d), parity (2.5 ± 0.3), and days in milk (105 ± 5 d) were allocated to 4 groups using a randomized complete block design: a negative control group (without LJE supplementation; CON) and groups that received LJE at 14, 28, and 56 g/d. The experiment lasted 10 wk over a hot summer, with a pre-feeding period of 2 wk. Cows were exposed to heat stress, as the average temperature-humidity index was greater than 72. The results showed that LJE had no effect on respiration rate; however, it reduced the rectal temperature of dairy cows experiencing heat stress in both a linear and quadratic manner; the lowest (39.03°C) was recorded for the LJE-28 group, lower than the CON group. Supplementation with LJE did not affect dry matter intake, milk yield, or milk composition. The majority of biochemical parameters in serum were unaffected by supplementation with different amounts of LJE; the exception was creatinine, which was reduced quadratically. Compared with the CON group, serum triiodothyronine concentrations increased significantly in the LJE-28 group. Addition of LJE to the diet increased thyroxine concentrations quadratically; values peaked at 18.62 ng/mL in the LJE-28 group. Furthermore, supplementation with increasing amounts of LJE quadratically increased the activity of glutathione peroxidase and total antioxidant capacity in serum but decreased concentration of malondialdehyde. Although we detected no differences in the concentrations of IgA, IgM, or cytokines, dairy cows in the LJE-28 group had higher IgG and IL-4 concentrations than did cows in the CON group. Supplementation with LJE increased concentrations of IgG and IL-4 in the serum quadratically but decreased that of IL-2. Finally, heat shock protein 72 concentrations in the serum tended to fall quadratically as the amount of LJE increased. In summary, LJE had no negative effects on lactation performance but helped to alleviate heat stress by improving antioxidant status and promoting endocrine and immune functions. Supplementation with LJE at 28 g/d is recommended for lactating dairy cows experiencing heat stress during hot summers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.