Sirtuins are evolutionarily conserved protein, serving as nicotinamide adenine dinucleotide-dependent deacetylases or adenosine diphosphate-ribosyltransferases. The mammalian sirtuins family, including SIRT1~7, is involved in many biological processes such as cell survival, proliferation, senescence, stress response, genome stability and metabolism. Evidence accumulated over the past two decades has indicated that sirtuins not only serve as important energy status sensors but also protect cells against metabolic stresses. In this review, we summarize the background of glucose and lipid metabolism concerning sirtuins and discuss the functions of sirtuins in glucose and lipid metabolism. We also seek to highlight the biological roles of certain sirtuins members in cancer metabolism.
Linker histone H1 is a master regulator of higher order chromatin structure, but its involvement in the DNA damage response and repair is unclear. Here, we report that linker histone H1.2 is an essential regulator of ataxia telangiectasia mutated (ATM) activation. We show that H1.2 protects chromatin from aberrant ATM activation through direct interaction with the ATM HEAT repeat domain and inhibition of MRE11-RAD50-NBS1 (MRN) complex-dependent ATM recruitment. Upon DNA damage, H1.2 undergoes rapid PARP1-dependent chromatin dissociation through poly-ADP-ribosylation (PARylation) of its C terminus and further proteasomal degradation. Inhibition of H1.2 displacement by PARP1 depletion or an H1.2 PARylation-dead mutation compromises ATM activation and DNA damage repair, thus leading to impaired cell survival. Taken together, our findings suggest that linker histone H1.2 functions as a physiological barrier for ATM to target the chromatin, and PARylation-mediated active H1.2 turnover is required for robust ATM activation and DNA damage repair.
β-Catenin, which is a key mediator of the wingless-integration site (Wnt)/β-catenin signaling pathway, plays an important role in cell proliferation, cell fate determination, and tumorigenesis, by regulating the expression of a wide range of target genes. Although a variety of posttranslational modifications are involved in β-catenin activity, the role of lysine methylation in β-catenin activity is largely unknown. In this study, su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing protein 7 (SET7/9), a lysine methyltransferase, interacted with and methylated β-catenin, as demonstrated both in vitro and in vivo. The interaction and methylation were significantly enhanced in response to H2O2 stimulation. A mutagenesis assay and mass spectrometric analyses revealed that β-catenin was monomethylated by SET7/9 at lysine residue 180. Methylated β-catenin was easily recognized by phosphokinase glycogen synthase kinase (GSK)-3β for degradation. Consistent with this finding, the mutated β-catenin (K180R) that cannot be methylated exhibited a longer half-life than did the methylated β-catenin. The consequent depletion of SET7/9 by shRNA or the mutation of the β-catenin (K180R) significantly enhanced the expression of Wnt/β-catenin target genes such as c-myc and cyclin D1 and promoted the growth of cancer cells. Together, these results provide a novel mechanism by which Wnt/β-catenin signaling is regulated in response to oxidative stress.
Histone methyltransferase G9a has critical roles in promoting cancercell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.double-strand break | G9a | RPA | CK2 | homologous recombination
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.