Candida species have two distinct lifestyles: planktonic, and surface-attached communities called biofilms. Mature C. albicans biofilms show a complex three-dimensional architecture with extensive spatial heterogeneity, and consist of a dense network of yeast, hyphae, and pseudohyphae encased within a matrix of exopolymeric material. Several key processes are likely to play vital roles at the different stages of biofilm development, such as cell-substrate and cell-cell adherence, hyphal development, and quorum sensing. Biofilm formation is a survival strategy, since biofilm yeasts are more resistant to antifungals and environmental stress. Antifungal resistance is a multifactorial process that includes multidrug efflux pumps, target proteins of the ergosterol biosynthetic pathway. Most studies agree in presenting azoles as agents with poor activity against Candida spp. biofilms. However, recent studies have demonstrated that echinocandins and amphotericin B exhibit remarkable activity against C. albicans and Candida non-albicans biofilms. The association of Candida species with biofilm formation increases the therapeutic complexity of foreign body-related yeast infections. The traditional approach to the management of these infections has been to explant the affected device. There is a strong medical but also economical motivation for the development of novel anti-fungal biofilm strategies due to the constantly increasing resistance of Candida biofilms to conventional antifungals, and the high mortality caused by related infections. A better description of the extent and role of yeast in biofilms may be critical for developing novel therapeutic strategies in the clinical setting.
PurposeClinical, immunological and microbiological characteristics of recurrent invasive pneumococcal disease (IPD) in children were evaluated, differentiating relapse from reinfection, in order to identify specific risk factors for both conditions.MethodsAll patients <18 years-old with recurrent IPD admitted to a tertiary-care pediatric center from January 2004 to December 2011 were evaluated. An episode of IPD was defined as the presence of clinical findings of infection together with isolation and/or pneumococcal DNA detection by Real-Time PCR in any sterile body fluid. Recurrent IPD was defined as 2 or more episodes in the same individual at least 1 month apart. Among recurrent IPD, we differentiated relapse (same pneumococcal isolate) from reinfection.Results593 patients were diagnosed with IPD and 10 patients died. Among survivors, 23 episodes of recurrent IPD were identified in 10 patients (1.7%). Meningitis was the most frequent form of recurrent IPD (10 episodes/4 children) followed by recurrent empyema (8 episodes/4 children). Three patients with recurrent empyema caused by the same pneumococcal clone ST306 were considered relapses and showed high bacterial load in their first episode. In contrast, all other episodes of recurrent IPD were considered reinfections. Overall, the rate of relapse of IPD was 0.5% and the rate of reinfection 1.2%. Five out of 7 patients with reinfection had an underlying risk factor: cerebrospinal fluid leak (n = 3), chemotherapy treatment (n = 1) and a homozygous mutation in MyD88 gene (n = 1). No predisposing risk factors were found in the remainder.Conclusionsrecurrent IPD in children is a rare condition associated with an identifiable risk factor in case of reinfection in almost 80% of cases. In contrast, recurrent IPD with pleuropneumonia is usually a relapse of infection.
BackgroundDried blood spot (DBS) is a reliable blood collection method for storing samples at room temperature and easily transporting them. We have previously validated a Real-Time PCR for detection of Streptococcus pneumoniae in DBS. The objective of this study was to apply this methodology for the diagnosis of S. pneumoniae and Haemophilus influenzae b (Hib) in DBS samples of children with pneumonia admitted to two hospitals in Mozambique and Morocco.Methods Ply and wzg genes of S. pneumoniae and bexA gene of Hib, were used as targets of Real-Time PCR. 329 DBS samples of children hospitalized with clinical diagnosis of pneumonia were tested.ResultsReal-Time PCR in DBS allowed for a significant increase in microbiological diagnosis of S. pneumoniae and Hib. When performing blood bacterial culture, only ten isolates of S. pneumoniae and none of Hib were detected (3·0% positivity rate, IC95% 1·4-5·5%). Real-Time PCR from DBS samples increased the detection yield by 4x fold, as 30 S. pneumoniae and 11 Hib cases were detected (12·4% positivity rate, IC95% 9·0-16·5%; P<0·001).ConclusionReal-Time PCR applied in DBS may be a valuable tool for improving diagnosis and surveillance of pneumonia caused by S. pneumoniae or Hib in developing countries.
Background. SARS-CoV-2, the COVID-19 causative agent, has infected millions of people and killed over 1.6 million worldwide. A small percentage of cases persist with prolonged positive RT-PCR on nasopharyngeal swabs. The aim of this study was to determine risk factors for prolonged viral shedding amongst patient's basal clinical conditions.Methods. We have evaluated all 513 patients attended in our hospital between 1 March and 1 July. We have selected all 18 patients with prolonged viral shedding and compared them with 36 sex-matched randomly selected controls. Demographic, treatment and clinical data were systematically collected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.