IL-33 is a novel member of the IL-1 family and ligand for the IL-1 receptor-related protein, ST2. Recent evidence suggests that the IL-33/ST2 axis plays a critical role in several autoimmune and inflammatory disorders; however, its role in inflammatory bowel disease (IBD) has not been clearly defined. We characterized IL-33 and ST2 expression and modulation after conventional anti-TNF therapy in Crohn's disease and ulcerative colitis (UC) patients and investigated the role of IL-33 in SAMP1/YitFc (SAMP) mice, a mixed Th1/Th2 model of IBD. Our results showed a specific increase of mucosal IL-33 in active UC, localized primarily to intestinal epithelial cells (IEC) and colonic inflammatory infiltrates. Importantly, increased expression of full-length IL-33, representing the most bioactive form, was detected in UC epithelium, whereas elevated levels of cleaved IL-33 were present in IBD serum. ST2 isoforms were differentially modulated in UC epithelium, and sST2, a soluble decoy receptor with anti-inflammatory properties, was also elevated in IBD serum. Infliximab (anti-TNF) treatment of UC decreased circulating IL-33 and increased sST2, whereas stimulation of HT-29 IEC confirmed IL-33 and sST2 regulation by TNF. Similarly, IL-33 significantly increased and correlated with disease severity, and potently induced IL-5, IL-6, and IL-17 from mucosal immune cells in SAMP mice. Taken together, the IL-33/ST2 system plays an important role in IBD and experimental colitis, is modulated by anti-TNF therapy, and may represent a specific biomarker for active UC.inflammatory bowel disease | anti-TNF therapy | SAMP1/YitFc mouse model
Abnormal levels of microRNA (miR)-155, which regulate inflammation and immune responses, have been demonstrated in the colonic mucosa of patients with inflammatory bowel diseases (IBD), although its role in disease pathophysiology is unknown. We investigated the role of miR-155 in the acquisition and maintenance of an activated phenotype by intestinal myofibroblasts (IMF), a key cell population contributing to mucosal damage in IBD. IMF were isolated from colonic biopsies of healthy controls, ulcerative colitis (UC) and Crohn's disease (CD) patients. MiR-155 in IMF was quantified by quantitative reverse transcription-PCR in basal condition and following exposure to TNF-α, interleukin (IL)-1β, lipopolysaccharide (LPS) or TGF-β1. The effects of miR-155 mimic or inhibitor transfection on cytokine release and suppressor of cytokine signaling 1 (SOCS1) expression were assessed by enzyme-linked immunosorbent assay and western blot, respectively. Regulation of the target gene SOCS1 expression by miR-155 was assessed using luciferase reporter construct. We found that miR-155 was significantly upregulated in UC as compared with control- and CD-derived IMF. Moreover, TNF-α and LPS, but not TGF-β1 and IL-1β, significantly increased miR-155 expression in IMF. Ectopic expression of miR-155 in control IMF augmented cytokines release, whereas it downregulated SOCS1 expression. MiR-155 knockdown in UC-IMF reduced cytokine production and enhanced SOCS1 expression. Luciferase reporter assay demonstrated that miR-155 directly targets SOCS1. Moreover, silencing of SOCS1 in control IMF significantly increased IL-6 and IL-8 release. In all, our data suggest that inflammatory mediators induce miR-155 expression in IMF of patients with UC. By downregulating the expression of SOCS1, miR-155 wires IMF inflammatory phenotype.
SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.