Multimeric assemblies of kainate (KA) receptor subunits form glutamate-gated ion channels that mediate EPSCs and function as presynaptic modulators of neurotransmitter release at some central synapses. The KA2 subunit is a likely constituent of many neuronal kainate receptors, because it is widely expressed in most neurons in the CNS. We have studied the effect of genetic ablation of this receptor subunit on synaptic transmission at the mossy-fiber-CA3 pyramidal cell synapse in hippocampal slices, where kainate receptors are localized to both presynaptic and postsynaptic sites. We found that both postsynaptic and presynaptic mossy-fiber kainate receptor function is altered in neurons from KA2-/- mice. The presynaptic facilitatory autoreceptor, which modulates glutamate release from mossy-fiber terminals, had a reduced affinity for exogenous agonists and synaptic glutamate. Although presynaptic facilitation attributable to homosynaptic glutamate release was normal at mossy-fiber synapses in KA2-/- neurons, heterosynaptic kainate receptor-mediated facilitation resulting from the spillover of glutamate from CA3 collateral synapses was absent. Consistent with a decrease in glutamate affinity of the receptor, the half-decay of the postsynaptic kainate-mediated EPSC was shorter in the knock-out mice. These results identify the KA2 subunit as a determinant of kainate receptor function at presynaptic and postsynaptic mossy-fiber kainate receptors.
Kainate receptors function as mediators of postsynaptic currents and as presynaptic modulators of synaptic transmission at mossy fiber synapses. Despite intense research into the physiological properties of mossy fiber kainate receptors, their subunit composition in the presynaptic and postsynaptic compartments is unclear. Here we describe the distribution of kainate receptor subunits in mossy fiber synapses using subunit-selective antibodies and knock-out mice. We provide morphological evidence for the presynaptic localization of KA1 and KA2 receptor subunits at mossy fiber synapses. Immunogold staining for KA1 and KA2 was commonly seen at synaptic contacts and in vesicular structures. Postsynaptic labeling in dendritic spines was also observed. Although KA1 predominantly showed presynaptic localization, KA2 was concentrated to a greater degree on postsynaptic membranes. Both subunits coimmunoprecipitated from hippocampal membrane extracts with GluR6 but not GluR7 subunits. These results demonstrate that KA1 and KA2 subunits are localized presynaptically and postsynaptically at mossy fiber synapses where they most likely coassemble with GluR6 subunits to form functional heteromeric kainate receptor complexes.
The main purpose of the present study was to investigate the effects of the neuroprotective agent riluzole on the electrically evoked release of [3H]‐glutamate ([3H]‐Glu) in mouse neocortical slices. The reported selectivity of riluzole for excitatory amino acids was tested in release experiments with further neurotransmitters. Also distinct species, mouse, rat and man were compared. [3H]‐Glu was formed endogenously during incubation of slices with [3H]‐glutamine ([3H]‐Gln). Released [3H]‐Glu and tissue [3H]‐Glu was separated by anion exchange chromatography. Electrically evoked [3H]‐Glu release was strongly diminished by tetrodotoxin (TTX) and Ca2+‐withdrawal. Riluzole (100 μM) depressed the release of [3H]‐Glu up to 77% (IC50=19.5 μM). Riluzole was also able to inhibit strongly the electrically evoked release of [3H]‐acetylcholine ([3H]‐ACh) (at 100 μM by 92%, IC50=3.3 μM, and [3H]‐dopamine ([3H]‐DA) (at 32 μM by 72%, IC50=6.8 μM). However, the release of [3H]‐serotonin ([3H]‐5‐HT) was less diminished (at 100 μM by 53%, IC50=39.8 μM). Riluzole up to 100 μM did not affect [3H]‐noradrenaline ([3H]‐NA) release. Between species, i.e. in mouse, rat and human neocortex, no significant differences between the effects of riluzole could be observed. The NMDA‐receptor blocker MK‐801 (1 μM) and the AMPA/Kainate‐receptor blocker NBQX (1 μM) did neither affect the electrically evoked [3H]‐ACh release nor its inhibition by riluzole, indicating that effects of riluzole on transmitter release were neither due to modulation of ionotropic Glu receptors, nor due to indirect inhibition of Glu release through these receptors. Taken together, riluzole inhibits the release of distinct neurotransmitters differently, but is not selective for the excitatory amino acid Glu. British Journal of Pharmacology (2000) 130, 1227–1234; doi:
Presynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation of sensory input at the first synapse of dorsal root ganglion (DRG) neurons in the spinal dorsal horn. Central terminals of DRG neurons express AMPA and NMDA receptors whose activation modulates the release of glutamate, the main transmitter at these synapses. Previous work, with an antibody that recognizes all low-affinity kainate receptor subunits (GluR5, 6, 7), provided microscopic evidence of presynaptic kainate receptors in unidentified primary afferent terminals in superficial laminae of the spinal dorsal horn (Hwang SJ, Pagliardini S, Rustioni A, Valtschanoff JG. Presynaptic kainate receptors in primary afferents to the superficial laminae of the rat spinal cord. J Comp Neurol 2001; 436: pp. 275-289). We show here that, although all such subunits may be expressed in these terminals, GluR5 is the subunit most readily detectable at presynaptic sites in sections processed for immunocytochemistry. We also show that the high-affinity kainate receptor subunits KA1 and KA2 are expressed in central terminals of DRG neurons and are co-expressed with low-affinity receptor subunits in the same terminals. Quantitative data show that kainate-expressing DRG neurons are about six times more likely to express the P2X(3) subunit of the purinergic receptor than to express substance P. Thus, nociceptive afferents that express presynaptic kainate receptors are predominantly non-peptidergic, suggesting a role for these receptors in the modulation of neuropathic rather than inflammatory pain.
Ionotropic glutamate receptors (IGR), including NMDA, AMPA, and kainate receptors, are expressed in terminals with varied morphology in the superficial laminae (I-III) of the dorsal horn of the spinal cord. Some of these terminals can be identified as endings of primary afferents, whereas others establish symmetric synapses, suggesting that they may be gamma-aminobutyric acid (GABA)-ergic. In the present study, we used confocal and electron microscopy of double immunostaining for GAD65, a marker for GABAergic terminals, and for subunits of IGRs to test directly whether IGRs are expressed in GABAergic terminals in laminae I-III of the dorsal horn. Although colocalization is hard to detect with confocal microscopy, electron microscopy reveals a substantial number of terminals immunoreactive for GAD65 also stained for IGRs. Among all GAD65-immunoreactive terminals counted, 37% express the NMDA receptor subunit NR1; 28% are immunopositive using an antibody for the GluR2/4 subunits of the AMPA receptor; and 20-35% are immunopositive using antibodies for the kainate receptor subunits GluR5, GluR6/7, KA1, or KA2. Terminals immunoreactive for IGR subunits and GAD65 establish symmetric synapses onto dendrites and perikarya and can be presynaptic to primary afferent terminals within both type 1 and type 2 synaptic glomeruli. Activation of presynaptic IGR may reduce neurotransmitter release. As autoreceptors in terminals of Adelta and C afferent fibers in laminae I-III, presynaptic IGRs may play a role in inhibiting nociception. As heteroreceptors in GABAergic terminals in the same laminae, on the other hand, presynaptic IGRs may have an opposite role and even contribute to central sensitization and hyperalgesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.