Steroidal estrogens, originating principally from human excretion, are likely to play a major role in causing widespread endocrine disruption in wild populations of the roach (Rutilus rutilus), a common cyprinid fish, in rivers contaminated by treated sewage effluents. Given the extent of this problem, risk assessment models are needed to predict the location and severity of endocrine disruption in river catchments and to identify areas where regulation of sewage discharges to remove these contaminants is necessary. In this study we attempted to correlate the extent of endocrine disruption in roach in British rivers, with their predicted exposure to steroid estrogens derived from the human population. The predictions of steroid estrogen exposure at each river site were determined by combining the modeled concentrations of the individual steroid estrogens [17β -estradiol (E2), estrone (E1), and 17α -ethinylestradiol (EE2)] in each sewage effluent with their predicted dilution in the immediate receiving water. This model was applied to 45 sites on 39 rivers throughout the United Kingdom. Each site studied was then categorized as either high, medium, or low “risk” on the basis of the assumed additive potency of the three steroid estrogens calculated from data derived from published studies in various cyprinid fish species. We sampled 1,438 wild roach from the predicted high-, medium-, and low-risk river sites and examined them for evidence and severity of endocrine disruption. Both the incidence and the severity of intersex in wild roach were significantly correlated with the predicted concentrations of the natural estrogens (E1 and E2) and the synthetic contraceptive pill estrogen (EE2) present. Predicted steroid estrogen exposure was, however, less well correlated with the plasma vitellogenin concentration measured in the same fish. Moreover, we found no correlation between any of the end points measured in the roach and the proportion of industrial effluents entering the rivers we studied. Overall, our results provide further and substantive evidence to support the hypothesis that steroidal estrogens play a major role in causing intersex in wild freshwater fish in rivers in the United Kingdom and clearly show that the location and severity of these endocrine-disrupting effects can be predicted.
The occurrence of intersex fish is widespread in the rivers of England and Wales. The extent of intersex in fish populations is believed to be strongly linked to their exposure to steroid estrogens. The present study presents, to our knowledge, the first national, catchment-based risk assessment for steroid estrogens in the world. A graphical information system-based model predicted the concentrations of estradiol (E2), estrone, and ethinylestradiol, which were combined and compared with known biological effect levels to predict the risk of endocrine disruption for 10,313 individual river reaches (21,452 km) receiving effluent from more than 2000 sewage treatment plants serving more than 29 million people. The large scale of this assessment underlines the usefulness of computer-based risk assessment methods. Overall, 61% [corrected] of the modeled reaches (all percentages are in terms of the total river length modeled) in England and Wales were predicted to be not at risk from endocrine disruption (mean concentrations, <1 ng/L E2 equivalents). A large range existed in the percentage of river reaches at risk in the various regions, from 5% in Wales to 67% in the Thames catchment. Important factors influencing this proportion are the population density, particularly their location, and the available dilution. A very small proportion of reaches (approximately 1-3%) were predicted to be at high risk (>10 ng/L E2 equivalents). Many of these high-risk reaches, however, were ditches, which were composed almost entirely of sewage effluent. The model could be applied equally well to any other chemical of concern emanating from the human population that would be impractical to assess by measurement.
The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the use of bioassays for determining the estrogenic potency of WwTW effluents, and they highlight the associated problems for modeling approaches that are reliant on measured concentrations of estrogenic chemicals.
In recent years there has been considerable concern over the ability of substances discharged into the environment to disrupt the normal endocrine function of wildlife. In particular, the apparent widespread feminization of male fish in rivers has received significant attention from regulators in the United Kingdom, the United States, Europe, and Japan. The U.K. and European epidemiological data sets have demonstrated that the occurrence of feminized fish is associated with effluent discharges and that the incidence and severity is positively correlated with the proportion of treated sewage effluent in receiving waters. Although weakly estrogenic substances may contribute to the overall effect, studies have concluded that steroid estrogens are the principal and most potent estrogenic components of domestic sewage. Extensive laboratory data sets confirm that steroid estrogens are capable of eliciting the effects observed in wild fish at concentrations that have been measured in effluents and in the environment. Based on evaluation of the available information, the Environment Agency (England and Wales) has concluded that the weight of evidence for endocrine disruption in fish is sufficient to develop a risk management strategy for estrogenically active effluents that discharge to the aquatic environment.
The major exposure and uptake route for soluble toxins by aquatic organisms is generally considered to be through the water column. In the case of hydrophobic chemicals, exposure and uptake through diet often take on greater importance as the chemicals adsorb onto organic sediments and food. A chemical that has recently come under close scrutiny because of its toxicity and possible endocrine disrupting effects in aquatic life is 4-nonylphenol (NP). It has been detected in environmental water and sediment samples and is a persistent and hydrophobic (log KOW = 4.48) contaminant in many aquatic systems. In this study, the relative importance of NP uptake through accumulation from diet and water was examined for the detritus-feeding freshwater shrimp Gammarus pulex. Using a bootstrap nonlinear regression technique, the level of toxin present in G. pulex at any time during or after initial exposure was estimated. Heterogeneity, together with assumptions on feeding rate, was shown to affect the determination of NP uptake substantially. Because of its lifestyle as a benthic organism, the main exposure route was at first assumed to be through sediments and food. However, the results suggest that major uptake may also occur through water. The statistical and modeling methodology may be applied to uptake and depuration assessments for any aquatic organisms exhibiting a variable feeding phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.