Genetic manipulations of insect populations for pest control have been advocated for some time, but there are few cases where manipulated individuals have been released in the field and no cases where they have successfully invaded target populations. Population transformation using the intracellular bacterium Wolbachia is particularly attractive because this maternally-inherited agent provides a powerful mechanism to invade natural populations through cytoplasmic incompatibility. When Wolbachia are introduced into mosquitoes, they interfere with pathogen transmission and influence key life history traits such as lifespan. Here we describe how the wMel Wolbachia infection, introduced into the dengue vector Aedes aegypti from Drosophila melanogaster, successfully invaded two natural A. aegypti populations in Australia, reaching near-fixation in a few months following releases of wMel-infected A. aegypti adults. Models with plausible parameter values indicate that Wolbachia-infected mosquitoes suffered relatively small fitness costs, leading to an unstable equilibrium frequency <30% that must be exceeded for invasion. These findings demonstrate that Wolbachia-based strategies can be deployed as a practical approach to dengue suppression with potential for area-wide implementation.
In recent decades, multipartite mutualisms involving microorganisms such as fungi have been discovered in associations traditionally thought of as bipartite. Ant-plant mutualisms were long thought to be bipartite despite fungi being noticed in an epiphytic ant-plant over 100 years ago. We sequenced fungal DNA from the three distinct domatium chambers of the epiphytic ant-plant Myrmecodia beccarii to establish if fungal communities differ by chamber type across five geographic locations spanning 675 km. The three chamber types serve different ant-associated functions including ‘waste’ chambers, where ant workers deposit waste; ‘nursery’ chambers, where the brood is kept; and ‘ventilation’ chambers, that allow air into the domatium. Overall, fungi from the order Chaetothyriales dominated the chambers in terms of the proportion of operational taxonomic units (OTUs; 13.4%) and sequence abundances of OTUs (28% of the total); however a large portion of OTUs (28%) were unidentified at the order level. Notably, the fungal community in the waste chambers differed consistently from the nursery and ventilation chambers across all five locations. We identified 13 fungal OTUs as ‘common’ in the waste chambers that were rare or in very low sequence abundance in the other two chambers. Fungal communities in the nursery and ventilation chambers overlapped more than either did with the waste chambers but were also distinct from each other. Differences in dominance of the common OTUs drove the observed patterns in the fungal communities for each of the chamber types. This suggests a multipartite mutualism involving fungi exists in this ant-plant and that the role of fungi differs among chamber types.
Background: Worker reproduction has an important influence on the social cohesion and efficiency of social insect colonies, but its role in the success of invasive ants has been neglected. We used observations of 233 captive colonies, laboratory experiments, and genetic analyses to investigate the conditions for worker reproduction in the invasive Anoplolepis gracilipes (yellow crazy ant) and its potential cost on interspecific defence. We determined the prevalence of worker production of males and whether it is triggered by queen absence; whether physogastric workers with enlarged abdomens are more likely to be reproductive, how normal workers and physogastric workers compare in their contributions to foraging and defence; and whether worker-produced males and males that could have been queen- or worker-produced differ in their size and heterozygosity.Results: Sixty-six of our 233 captive colonies produced males, and in 25 of these, some males could only have been produced by workers. Colonies with more workers were more likely to produce males, especially for queenless colonies. The average number of days between the first appearance of eggs and adult males in our colonies was 54.1± 10.2 (mean ± SD, n=20). In our laboratory experiment, queen removal triggered an increase in the proportion of physogastric workers. Physogastric workers were more likely to have yolky oocytes (37-54.9%) than normal workers (2-25.6%), which is an indicator of fertile or trophic egg production. Physogastric workers were less aggressive during interspecific aggression tests and foraged less than normal workers. The head width and wing length of worker-produced males were on average 4.0% and 4.3% greater respectively than those of males of undetermined source. Our microsatellite DNA analyses indicate that 5.5% of worker-produced males and 14.3% of males of undetermined source were heterozygous, which suggests the presence of diploid males and/or genetic mosaics in A. gracilipes. Conclusions: Our experimental work provides crucial information on worker reproduction in A. gracilipes and its potential cost to colony defence. The ability of A. gracilipes workers to produce males in the absence of queens may also contribute to its success as an invasive species if intranidal mating can take place between virgin queens and worker-produced males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.