The constant increase in drug resistance, occurrence of incurable diseases and high medical costs, have necessitated bio-prospecting of fungi as alternative sources of therapeutic compounds. This study aimed at assessing the antibacterial effect and mode of action of secondary metabolites from fungal endophyte associated with Aloe ferox Mill. Endophytic fungus was isolated from the gel of A. ferox and identified by internal transcribed spacer (ITS) rRNA gene sequence analysis. The targets of antibacterial activity were assessed based on minimum inhibitory concentration (MIC) and the effect of the extract on respiratory chain dehydrogenase (RCD) and membrane integrity. Fourier transform-infrared spectrophotometer (FTIR) was employed to ascertain functional groups. The fungus with the most promising antibiotic-production was identified as Aspergillus welwitschiae MK450668.1. Its extract exhibited antibacterial activity with the MIC values of 0.5 and 1 mg/mL against Staphylococcus aureus (ATCC 25925) and Escherichia coli (ATCC 25922). It demonstrated the inhibitory effect on the RCD activity and destruction of membrane integrity on the test bacteria. FTIR spectrum revealed hydroxyl, amine and alkene groups. A. welwitschiae MK450668.1 serves as a potential source of effective compounds to combat the challenge of drug resistance.
Background The emergence of drug resistance among pathogens has resulted in renewed interest in bioprospecting for natural microbial products. Methods This study aimed to bioprospecting endophytic actinobacterium associated with Aloe ferox Mill for its antibacterial activity. Endophytic actinomycetes were isolated from the gel of A. ferox Mill by surface sterilization technique using actinomycete isolation agar. The isolate with a promising antibacterial activity was identified using 16S rRNA sequence analysis. The minimum inhibitory concentration (MIC) of the extract was assessed by the micro-dilution method and its effect on the respiratory chain dehydrogenase (RCD) activity was ascertained by the iodonitrotetrazolium chloride (INT) assay. Fourier transform-infrared spectrophotometer (FTIR) and gas chromatography-mass spectrophotometry (GC-MS) were employed to identify functional groups and the chemical constituents, respectively. Results The actinobacterium was found to be Streptomyces olivaceus CP016795.1. Its extract displayed noteworthy antibacterial activity (MIC ≤1 mg/mL) against Staphylococcus aureus (ATCC 25925), Bacillus cereus (ATCC 10102), and Escherichia coli (ATCC 25922); and showed an inhibitory effect on the RCD activity. FTIR spectrum displayed hydroxyl, amine, and aromatic groups, and the GC–MS revealed 5-Hydroxymethylfurfural as the main constituent (19.47%). Conclusions S. olivaceus CP016795.1 can serve as a potential source of effective antibacterial compounds.
Background: The emergence of drug resistance among pathogens has resulted in renewed interest in bioprospecting for natural microbial products. Methods: This study aimed to bioprospecting endophytic actinobacterium associated with Aloe ferox Mill for its antibacterial activity. Endophytic actinomycetes were isolated from the gel of A. ferox Mill by surface sterilization technique using actinomycete isolation agar. The isolate with a promising antibacterial activity was identified using 16S rRNA sequence analysis. The minimum inhibitory concentration (MIC) of the extract was assessed by the micro-dilution method and its effect on the respiratory chain dehydrogenase (RCD) activity was ascertained by the iodonitrotetrazolium chloride (INT) assay. Fourier transform-infrared spectrophotometer (FTIR) and gas chromatography-mass spectrophotometry (GC-MS) were employed to identify functional groups and the chemical constituents, respectively. Results: The actinobacterium was found to be Streptomyces olivaceus CP016795.1. Its extract displayed noteworthy antibacterial activity (MIC ≤ 1 mg/mL) against Staphylococcus aureus (ATCC 25925), Bacillus cereus (ATCC 10102), and Escherichia coli (ATCC 25922); and showed an inhibitory effect on the RCD activity. FTIR spectrum displayed hydroxyl, amine, and aromatic groups, and the GC–MS revealed 5-Hydroxymethylfurfural as the main constituent (19.47%). Conclusions: S. olivaceus CP016795.1 can serve as a potential source of effective antibacterial compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.